
Evaluating Parallel Data Processing Systems
for Scalable Feature Selection

Bachelorarbeit

von

André Hacker

zur Erlangung des akademischen Grades

Bachelor of Science

im Studiengang Informatik

Prüfer:

Prof. Dr.-Ing. Robert Tolksdorf (FU Berlin)

Prof. Dr. rer. nat. Volker Markl (TU Berlin)

Betreuer:

MSc. Alexander Alexandrov (TU Berlin)

Dipl.-Ing. Christoph Boden (TU Berlin)

Bearbeitungszeitraum: 14.08.2013 − 06.11.2013

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungskommision vorgelegt und auch nicht
veröffentlicht.

Datum, Unterschrift

1

Contents

1 Introduction and Motivation 4

2 Background & Related Work 6
2.1 Parallel Data Processing Systems . 6

2.1.1 Fundamental Concepts . 8
2.1.2 Hadoop & MapReduce . 13
2.1.3 Stratosphere & PACT . 15

2.2 Machine Learning and Feature Selection 19
2.2.1 Machine Learning Basics . 19
2.2.2 Feature Selection . 20
2.2.3 Logistic Regression . 21
2.2.4 Scalable Feature Selection . 24

2.3 Related Work . 27

3 Comparing Parallel Programming Models 30
3.1 Making Feature Selection Scalable . 30
3.2 Scalable Feature Selection on MapReduce 34
3.3 Scalable Feature Selection on PACT 37

4 Experimental Evaluation 43
4.1 Experimental Setup . 43
4.2 Datasets . 44
4.3 Experiments . 45
4.4 Discussion of Scalable Feature Selection 56

5 Conclusion & Future Work 59

A Appendix 63

References 68

List of Abbreviations 72

List of Figures 73

List of Tables 74

2

Abstract

Parallel Data Processing Systems such as Apache Hadoop and Stratosphere are de-
signed to run complex analysis tasks on data of any type and scale. While Hadoop
and the MapReduce programming model are criticised for lacking expressiveness and
being inefficient, Stratosphere claims to overcome this with a more expressive pro-
gramming model and automatic optimizations. However, no independent compar-
isons of Hadoop and Stratosphere have been made so far, and for some fields such
as predictive analytics only few algorithms have been implemented in Stratosphere.
This thesis evaluates Stratosphere in comparison to Hadoop for a scalable feature
selection algorithm (SFS). The objective of SFS is to evaluate a large number of
features regarding their usefulness for predictive analytics. First, we contribute an
implementation of SFS for Stratosphere that will be compared to an existing Hadoop
implementation. Second, we evaluate both programming models based on an ideal
programming model. Third, we conduct a series of experiments to compare the per-
formance. The evaluation emphasizes the potential of Stratosphere but also reveals
several limitations, most notably the limited support for closures and the finding that
expressiveness does often not imply better performance.

Zusammenfassung

Parallele Verarbeitungssysteme wie Apache Hadoop und Stratosphere ermöglichen
komplexe Analysen von Daten beliebigen Typs und Ausmaßes. Während Hadoop
und das dazugehörige MapReduce Programmiermodell dafür kritisiert werden einen
Mangel an Ausdrucksfähigkeit und Effizienz zu haben, behauptet Stratosphere diese
Probleme durch ein ausdrucksstärkeres Programmiermodell und automatische Op-
timierungen zu überwinden. Es wurde bisher jedoch kein unabhängiger Vergleich
der beiden Systeme durchgeführt, und für einige Bereiche, wie z.B. Vorhersageanaly-
sen, wurden kaum Algorithmen in Stratosphere implementiert. Diese Arbeit evaluiert
Stratosphere im Vergleich zu Hadoop für einen Algorithmus zur skalierbaren Merk-
malsauswahl (SFS). Das Ziel von SFS ist es eine Vielzahl an Merkmalen im Hinblick
auf ihren Nutzen für eine Vorhersageanalyse zu evaluieren. Als ersten Beitrag imple-
mentieren wir SFS in Stratosphere, für den späteren Vergleich mit einer bestehenden
Hadoop Implementierung. Zweitens evaluieren wir die Programmiermodelle basierend
auf einem idealen Programmiermodel. Drittens führen wir eine Reihe von Tests für
die Performance-Analyse durch. Unsere Evaluierung unterstreicht das Potential von
Stratosphere, deckt aber auch Schwächen auf, insbesondere die eingeschränkte Unter-
stützung von Closures und die Erkenntnis, dass Ausdrucksstärke oft nicht in besserer
Performance resultiert.

3

1 Introduction and Motivation

Producing large amounts of data has never been easier. And increasingly often this
data is analysed and used to drive decisions. The sensors embedded in mobile de-
vices, which have become constant companions in our daily lives, produce enormous
amounts of audio, video, image, and text data. Software is increasingly often Internet
based and fosters social interaction, yielding an immense number of data to be han-
dled. Behind the scenes, companies process and analyse these data to make services
such as search, social based recommendations and fraud detection possible, but also
to improve their efficiency and competitiveness. The explosion of data, however, is
not limited to the Internet. Nearly all fields of science draw conclusions from ever
larger amounts of data. Also other industry sectors such as health care or traffic and
energy management begin to make sense of this new amount and variety of data,
which is captured by the term “Big Data” [31].

Parallel Data Processing Systems. These trends produced a strong need for
new cost-efficient technologies capable of storing and analysing huge datasets with
support for arbitrary data types and complex analysis tasks. The family of Par-
allel Data Processing Systems emerged to address this need, with systems such as
Apache Hadoop [1] and Stratosphere [4]. They borrow the principles from parallel
databases to exploit parallelism in clusters of commodity hardware computers and
offer programming models for custom data analysis tasks. MapReduce [16], the pro-
gramming model underlying Hadoop, was criticized for lacking expressiveness and
being a bad choice for general purpose analysis tasks since many tasks do not map
naturally to MapReduce or have poor performance [34, 2]. Stratosphere is one of the
systems addressing this by generalizing MapReduce to a more expressive program-
ming model, called PACT, adding support for complex data flows, iterations, and
joins. In this thesis we evaluate Stratosphere in comparison to Hadoop for the task
of feature selection, a use case from machine learning that will be introduced next.

Feature Selection. There is an increasing interest in predictive analytics [31], a
field from machine learning and statistics aiming to learn from data to forecast or to
make predictions about unseen events. For instance we could predict the category of
a news article using the words of the document as features. As a more interesting
example, an massive open online course system might want to predict how many of
the students of a currently running course will pass the exam, based on the homework
questions they answered so far and based on the data collected from the last time
the course was held. Features capture all we know about the input, for example
occurrences of words or interactions with an online learning system, and the design
and selection of relevant features is essential for good predictions. Feature selection
has also the benefit that it gives insights, since it answers questions like the following:

4

“Which words, or combination of words, are the best indicators that an article
belongs to a certain category?”

“What are the homework questions a student has to answer correctly to perform
good in the exam, i.e. which subjects are important for the learning process?”

While feature selection is a well studied field [19], it is an ongoing effort in research and
industry to rewrite algorithms to support the parallelism inherent in systems such as
Hadoop or Stratosphere. Singh et al. proposed a scalable feature selection algorithm
based on approximate models and showed how to parallelize it using MapReduce [38].
This algorithm, hereinafter referred to as Scalable Feature Selection (SFS), serves as
the use case in this thesis. This use case is of particular interest for Stratosphere as it
is the first use case from the area of predictive analytics implemented and evaluated.

Goals. Stratosphere claims that the improvements over Hadoop and MapReduce
such as the more expressive programming model significantly ease the implementation
of many complex data processing tasks and yield better performance [2]. This thesis
aims to test this claim for the use case of SFS, since no independent comparisons have
been made so far for Stratosphere1. For this task we will implement SFS for Strato-
sphere and compare it to an existing implementation in Hadoop. The evaluation and
comparison will be done in two dimensions. First, we will evaluate the programming
models qualitatively to see how well SFS can be expressed in each. Second, we will
run a series of experiments on a cluster for both systems to evaluate the performance
of both systems. The performance will be measured in terms of speedup and scale-
out behaviour: we test how the runtime varies when changing the cluster size, the
problem size or both. The methodology for evaluation of both dimensions and the
definitions for speedup and scaleout will be developed in the following chapters.

Structure of this thesis. The following chapter introduces the background neces-
sary for this work. We introduce the fundamentals underlying Parallel Data Process-
ing Systems such as types of parallelism, scaleout and speedup and introduce Hadoop
and Stratosphere. The second part of the Chapter 2 introduces the SFS algorithm
and required background including the basic machine learning terminology, feature
selection and logistic regression. We close the background chapter with a short sur-
vey of related work. Chapter 3 presents the qualitative part of the evaluation by
comparing the programming models for the two implementations of SFS. Chapter 4
presents the quantitative evaluation of both systems, reporting the results of a series
of experiments. At the end of Chapter 4 we shortly evaluate our SFS implementation.
The conclusion in Chapter 5 summarizes our findings.

1We are not aware of any comparisons or experiments for Stratosphere other than those from the
authors of the system. The author of this thesis joined the Stratosphere group recently but started
to work with Stratosphere only shortly before the thesis and tried to be as independent as possible.

5

2 Background & Related Work

This thesis is about the marriage of two very complementary fields: Parallel Data
Processing and machine learning, more specifically feature selection. In this chap-
ter we introduce both topics independently from each other. First, we discuss the
fundamentals of Parallel Data Processing Systems and introduce Hadoop and Strato-
sphere. Afterwards we introduce the basic machine learning terminology and the SFS
use case. Since the focus of our work is on the system evaluation side, we keep the
machine learning part more compact. For some involved topics such as mathematical
optimization we can only explain the motivation and the parts that are relevant for
our algorithm. For both fields we will give a short survey of related work at the end
of this Chapter.

2.1 Parallel Data Processing Systems

In this section we will describe Parallel Data Processing Systems2, a family of systems
that arose in the mid 2000s to address the emerging requirements of Big Data. We will
start with an informal definition of Big Data and see that it is more than just big in
terms of size in bytes. Afterwards we describe how Parallel Data Processing Systems
solve the requirements for Big Data, explaining the different forms of parallelism, the
limits and other fundamental concepts used by all systems. Then we will describe
the systems we compare in this thesis, Hadoop and Stratosphere, in more detail.

Big Data - more than just “big” data. The challenge to process large amounts
of data exists since the early days of computing, it is just the definition of large
that is constantly, and rapidly, changing. An often cited3 definition of Gartner, also
known as the “three Vs”, describes Big Data in a broader sense, as a variety of new
requirements and challenges arising in our current information landscape:

”
Big Data is high-volume, high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information processing for enhanced

insight and decision making.“ [6]

Our definition is mostly in line with this definition of Gartner that was first coined in
2001 and updated in 2012 as cited above. The following list gives an overview of the
requirements for Parallel Data Processing Systems resulting from our understanding
of Big Data.

2There is no unique name or definition for this family of systems. Other frequently used names
include Large Scale Data Processing Systems [37], Big Data Analytics Systems, Big Data Platforms
or simply Cluster Computing Systems [45].

3Ward and Barker recently published a survey of definitions for Big Data in [41] stating that the
three Vs of Gartner are among the most cited definitions.

6

• High volume and high scalability: The system shall enable storage and
processing of large scale data. It shall be easy to scale by adding machines, and
tolerate a certain amount of failure without loosing data.

• High variety: The system shall support arbitrary data types, ranging from
structured data to less structured data such as text, JSON, logfiles, graph data
or even binary data such as images or movies.

• High velocity: The system shall support a high rate of incoming data, e.g.
from data streams, but also allow quick or near real-time analyses to take fast
decisions based on new data. For long this was a less emphasized point for
Parallel Data Processing Systems since they were originally designed for long-
running batch queries.

• “Big” Analytics: The system shall enable custom and complex analytical
analysis tasks, ranging from SQL-like operations to advanced machine learning
and data mining tasks. Ideally the system offers direct support to execute
established languages for data analyses such as R [35] or Apache Pig [33] and
SQL.

• Efficiency and new hardware architectures: The system shall make use
of all available hardware resources efficiently, including new hardware archi-
tectures. This comprises increasing number of cores, heterogeneous hardware
environments, e.g. with graphical processing units, large main memory and
solid state disks. This efficiency becomes substantial for some systems if they
want to overcome the critique of being inefficient brute-force approaches [34].

While this list gives a good impression of the wide variety of requirements, the discus-
sion and evaluation of all these dimensions is beyond the scope of this thesis. Instead
we take the approach to start with a specific use case and evaluate the system based
on this.

There is a ongoing controversy about the high volume aspect of Big Data that is rele-
vant to discuss shortly. First of all there is a political controversy about the potential
miss-use of Big Data technologies as “Big Brother” technologies4. Second, there is a
controversy about whether the assumption is true that large scale batch-workloads
are the predominant use case or how much the systems should also support other
types of workloads. The inventors of many Big Data technologies, Google, argues
for a data-driven approach and describes that

”
invariably, simple models and a lot

of data trump more elaborate models based on less data“ [20] and other companies
follow this approach [30]. On the other hand, an empirical analysis of Hadoop work-

4This is a important debate in the opinion of the author, considering a developer has a respon-
sibility for the software he develops and the special historical background in Germany. The actual
discussion, however, is out of scope of this thesis.

7

loads from various companies revealed that 90% of jobs accesses files of less than
a few GBs [44]. They and others [36] argue that many smaller interactive ad-hoc
queries are equally important and should be supported in addition to long-running
batch queries. For this work we will stay with a broader understanding of Big Data,
including the need to efficiently handle relatively small datasets.

2.1.1 Fundamental Concepts

This section introduces the fundamental concepts underlying Parallel Data Processing
Systems: Parallelism, speedup, and scalability. It also discusses the laws and the lim-
its of these. In the course of this introduction we will identify many requirements and
desirable properties for systems and algorithms and we will use these requirements in
our evaluation. Furthermore, explaining these fundamentals in detail enables a more
intuitive understanding of the systems.

The most important concept is parallelism. We can distinguish at least 3 forms of
parallelism [12] and will see that most systems actually use a mix of those three.

Process 2

Merge

Process 3Process 1

a) Data Parallelism

Input
(part 1)

Input
(part 2)

Input
(part 3)

Task A

Task B

Input

b) Pipeline
Parallelism

Task A

Merge

Input

c) Task Parallelism

Task B

Figure 1: Visualization of the three types of parallelism, inspired by [12].

Data Parallelism comprises to split the data into multiple parts (partitions) and run
the same task in parallel and independently on the different partitions of data.

Pipeline Parallelism exists if the output of one task, e.g. a single line of text, is
directly forwarded to and processed by a subsequent task without waiting for the
first task to compute the complete output. One can think of this as a stream of data
flowing through a pipeline of concurrently running tasks, which is also a form of task
parallelism.

Task Parallelism comprises to divide different tasks among different parallel comput-
ing nodes or processes. A big cluster for instance executes many different workloads

8

at the same time and distributes the various tasks among the nodes. Task paral-
lelism is also possible on a lower level, if a workload consists of multiple tasks and no
dependencies exist between them.

We will use the abbreviation dop to describe the degree of parallelism, i.e. how many
instances of a task work in parallel. In our context dop equals to the number of nodes
in a cluster unless otherwise specified. Dop could however also describe the number
of tasks, processes or threads executed in parallel on a single machine, and in this
case we call it intra-node dop.

Let us look closer on how data parallelism can be achieved in our context. Parallel
Data Processing systems rely on a

”
Shared Nothing“ architecture [39] where multiple

independent machines are interconnected by a high speed local area network and
every node usually stores only a part of the overall data. In such an environment
the best way to achieve data parallelism is to move the computation to the data. An
ideal example is to compute the global sum of numeric records: Most of the work can
be done locally, i.e. so called data locality is given, where each machine computes a
partial sum of his records. Each machine just sends a single number over the network
to a single machine computing the final sum. Let us contrast this with a more realistic
example: If we want to make a SQL-Join of two very large tables that are randomly
distributed among the nodes we have to sent nearly all data over the network to do a
so called repartitioning : Every key of the join-key is mapped to a single machine and
all records with this key are sent to this machine. This way the data are partitioned
by the join-key and the system can do the joining completely locally. The notion of
partitioning is very important because if there is a partitioning but the system does
not know about it, it would repartition the data again.

The applicability of the different types of parallelism highly depends on the problem
and the availability of parallel algorithms for it, but the system has an equally impor-
tant responsibility. First it should optimize the data flow in a way that maximizes
data locality and minimizes the costs, especially for network transfer. To give an
example, if we want to compute a cross product between one very large and one very
small input in a distributed way, the system should decide to broadcast the small
input to all nodes. Furthermore it can also store the data in a way that is optimized
for the typical use cases, e.g. by using columnar storage for aggregations and indices.
A system can increase its degree of freedom by exposing a declarative and expressive
programming model, where the developer states what he wants to see or what parts
can be computed in parallel and the system cares about how to execute it. SQL is
such a declarative language and its success gives evidence that declarativity is a de-
sirable property. These considerations will be important in our subsequent evaluation
of the systems.

9

Speedup and Scalability. The main motivation behind the usage of parallelism
is speedup and scalability which will be introduced next.

Speedup describes the ability to solve a given problem with fixed input size faster, in
our case by adding more computing nodes and using any form of parallelism.

(Horizontal) scalability describes the ability to efficiently solve problems growing in
size by adding more nodes. In this thesis we use scalability as a synonym for horizontal
scalability (scaleout). It contrasts to vertical scaling (scaleup), where we would not
add more nodes but instead use more powerful hardware. We found that scaleout and
scaleup are complementary since powerful hardware such as large memory, multi-core
and multiple disks allow us to increase the intra-node dop in our experiments which
leads to significant performance improvements.

scaleout

. . . sc
a

le
u

p

. . .

Figure 2: Scaleout and scaleup as complementary concepts.

We use the following two metrics to express both desired properties5.

Speedup =
elapsed time using a small system

elapsed time using a big system

Scaleout = horizontal scalability =
elapsed time small system small problem

elapsed time big system big problem

The goal is to get as close as possible to linear speedup and linear scaleout. Linear
speedup means that a problem of fixed size can be solved twice as fast by doubling
the computing resources. Linear scaleout means that a problem doubled in size can
be solved in the same time by using twice as many computing resources.

Amdahl’s law. How close can we get to linear speedup and scalability? As early
as in 1967 Gene Amdahl described the maximum possible speedup, now known as
Amdahl’s law. It assumes a problem of constant size and that there is a fraction p
of the runtime that can be executed in parallel (with linear speedup or worse) and
a serial fraction s of the program that cannot be parallelized and thus limits the
speedup. It is important to note that s and p are defined as fractions, or relative
time, and so s+p = 1 and s = 1−p. Under these assumptions the maximum speedup
is defined as:

5We use the terminology as in [29]. In the past, the term scaleup was used for what we call
scaleout, e.g. by DeWitt and Grey [12].

10

a) Reference input and reference runtime
for DOP 1

Non-parallelizable time (s)

Single record of input (smallest processable unit)

b) Speedup for DOP 2 according to Amdahl

c) Maximum speedup according to Amdahl
for infinite DOP. Amdahl does not have any
concept of smallest unit.

d) Maximum speedup according to Amdahl,
considering smallest input units.

e) Scaled speedup (Gustafson): Runtime
constant when scaling the DOP and input
by 4. Assumption: s = constant

f) Scaled speedup, considering additional
overhead. (Taking Amdahls assumptions,
s would increase even by factor 4)

Figure 3: Visualization of different aspects of parallelism. Starting with a reference problem
and runtime we analyse the speedup and scaleout behaviour using the assumptions of
Amdahl’s and Gustafson’s law. The horizontal axis denotes the total runtime, the vertical
axis the degree of parallelism.

S(N)s,p =
time without parallelism

time with parallelism N
=

s+ p

s+ p
N

=
1

s+ p
N

.

Assuming unlimited computing resources we can compute the parallel part in zero
time and receive the maximum possible speedup for a given problem:

lim
N→∞

S(N)s,p =
1

s+ 0
=

1

s

Reevaluating Amdahl Let us assume a problem with 10% serial time, according
to Amdahl’s assumptions, which might seam realistic for some real world problems
at a first glance. Amdahl’s law proofs that even large industry clusters with tens of
thousands nodes could solve such problem only 10 times faster than a single com-
puter. In 1988 Gustafson argued [18] that Amdahl’s law incorrectly implies that only

11

very few algorithms with very low s can experience a high speedup. He found that
the assumption that the absolute serial time sabsolut is linearly growing with bigger
problems is “virtually never the case”. Neither it is the case that we want to solve
a problem of fixed size faster, but more often we want to solve the largest possible
problem in a defined time. He changed the assumptions: Given a problem that takes
s serial and p parallel time to be executed on a parallel system with a given dop N ,
where s+p is again normed to 1. Then the time for the execution on a single system,
which has N times less parallelism, is defined to be s+ (N · p). This is equivalent to
saying that s is constant and p can experiences linear speedup. He called the new
metric scaled speedup which is better known as Gustafson’s law:

S(N)sabsolut,p =
time without parallelism

time with dop N
=
s+ (p ·N)

s+ p︸ ︷︷ ︸
=1

= s+ (p ·N)

We can see that the serial fraction is getting smaller and smaller the bigger the
problem becomes - and linear speedup is finally feasible. Gustafson describes his law
to be closely related to the scaleout behaviour and that this is what usually matters
more than the speedup: We add more nodes and want to solve bigger problems in
the same ammount of time. The algebraic differences of the two laws can however be
reduced to the different definitions of s and p6.

Figure 3 illustrates the speedup and scaleout behaviour according to Gustafson’s
and Amdahl’s law using a simplified problem consisting of 8 records that can not be
further divided and an additional serial fraction.

Now as we defined scalability and speedup, we can use them to evaluate 1) the
systems, here Stratosphere and Hadoop, and 2) the algorithm, here SFS.

Scalable algorithms. A scalable algorithm has linear or better asymptotic runtime,
i.e. O(n), and behaves as assumed in Gustafson’s law, with a small serial runtime
that does not change with the dop. Lin and Dyer [29] describe such ideal algorithm
as follows: Doubling the size of the input at most doubles the runtime and doubling
the dop, the algorithm runs in half the time or better. Unfortunately for many real
world problems there are no known algorithms exposing such ideal behaviour, since
the coordination and communication effort usually grows with parallelism and most
algorithms have a non-parallelizable part.

Scalable systems. A scalable system is a system giving the following guaranty:

“If you express your scalable algorithm in my programming model, it is guaranteed
that you get overall linear scalability and speedup.”

6Literature sometimes calls both formulas “speedup” without distinguishing the different mean-
ings of s and thereby ignores the different assumptions.

12

This informal definition highlights that the developer must find a parallel algorithm
for his problem, using the specific Programming Model exposed by the system. We
conclude that a system can be evaluated in two dimensions:

1. How well the Programming Model fits the problems it is designed for.

2. How well the system ensures scalability and speedup, for programs written in
the programming model.

The task of this thesis is to answer these two questions for Stratosphere in comparison
to Hadoop for SFS. For both questions we have individual Chapters 3 and 4. We
intentionally stay with this simplistic view. Additional relevant aspects will come on
the stage when we discuss the concrete systems in the next two sections.

2.1.2 Hadoop & MapReduce

Apache describes their Hadoop project as
”
open-source software for reliable, scalable,

distributed computing“ [1]. Indeed one could say that it evolved to a Data Operating
System7 and stands for many things: the distributed file system HDFS, the program-
ming model MapReduce, a huge ecosystem for Big Data and a generic framework
for job scheduling and resource management on a cluster called YARN. Hadoop is
currently in a transition from version 1.0 to version 2.0 with a major change in the
architecture. We focus on Hadoop 2.0 and will now introduce Hadoop bottom up.

HDFS. The Hadoop Distributed Filesystem (HDFS) is a distributed filesystem
inspired by the Google File System [16]. It offers a hierarchical folder-based API and
stores its file in a shared nothing cluster using commodity hardware. Each file copied
to the HDFS is divided into blocks, the default block size being 128MB, and each
block is stored on a few nodes. The replication factor, typically 3, defines to how
many nodes it is sent - a high value increases fault tolerance and sometimes data
locality but slows down data loading and requires more space. HDFS offers an API
for higher level systems to see where blocks are stored, allowing them to move the
computation to the data.

YARN. In Hadoop 2.0, HDFS and YARN8 can be seen as the two supporting pillars,
as illustrated in Figure 4. YARN is the service owning all resources (nodes) in a cluster
and overseas and manages all applications running on the cluster. YARN consists of
a central ResourceManager and a NodeManager for every node. Applications written

7This analogy is used multiple times in recent articles, e.g. http://de.slideshare.net/awadallah/
introducing-apache-hadoop-the-modern-data-operating-system-stanford-ee380, accessed 2013, Okt.
16th

8YARN is used as a synonym for Hadoop 2.0 but also for the resource management component,
which is a part of Hadoop 2.0. It should be clear from context what we refer to.

13

http://de.slideshare.net/awadallah/introducing-apache-hadoop-the-modern-data-operating-system-stanford-ee380
http://de.slideshare.net/awadallah/introducing-apache-hadoop-the-modern-data-operating-system-stanford-ee380

Figure 4: Hadoop 1.0 versus Hadoop 2.0, taken from http://hortonworks.com/hadoop/
yarn/

for YARN themselves have their own master and worker tasks, but YARN will receive
and schedule the job submissions and grant the resources.

MapReduce. Hadoop MapReduce is a programming model inspired by Googles
MapReduce [11] and a runtime for parallel execution of programs written in MapRe-
duce. When Hadoop was developed in 2005 at Yahoo it consisted of HDFS and
MapReduce and both were tightly coupled. Today, MapReduce is the most impor-
tant out of a growing number of YARN applications9.

Shuffled/
repartitioned
output (local)

Node 1

<order>

<order>

<order>

Node 2

<order>

<order>

<order>

map

map

map

map

map

map

B 5

A 3

B 7

B 8

C 10

A 1

InputInput
(HDFS)

Intermediate
output (local)

A 3,1

B 5,7,8

reduce

reduce

A 4

B 20

Final output
(HDFS)

C 10 reduce C 10

Figure 5: A simplified MapReduce example focusing on the semantics of Map and Reduce
and on the data flow. The job computes the total revenue for each customer (A, B and C)
based on a collection of orders stored in HDFS in any serializable format.

The programming model consists of two second-order functions Map and Reduce with

9See http://wiki.apache.org/hadoop/PoweredByYarn for a list of Yarn applications.

14

http://hortonworks.com/hadoop/yarn/
http://hortonworks.com/hadoop/yarn/
http://wiki.apache.org/hadoop/PoweredByYarn

an optional Combine method in between. To write a program in MapReduce one has
to write custom implementations (first-order functions) for Map and Reduce. These
implementations are called user defined functions (UDF). We illustrate the semantics
of Map and Reduce in Figure 5, showing the example of computing the total revenue
for a group of customers. The Map UDF gets called for every input unit. It processes
the input and emits any number of key-value pairs as the output. In our case the
UDF receives a single order object, extracts the customer-id and revenue and emits
the customer-id as key and revenue as value. The system then repartitions by the key:
It usually applies a hash function on the key to determine where to send the output
and transmits the output over network if necessary. After the last map finished, the
system calls the reduce function for every key and passes an iterator over all values
of the map phase output having this key. Hadoop MapReduce gives the additional
guarantee that the Reduce calls are made in sort order of the key on every node, so
that B will be called before C. This is because it uses sorting as an internal strategy
to group by the key. The output of the Reduce function is the final output and stored
on HDFS.

As we saw previously a central goal of shared nothing systems is to reduce the network
traffic. To reduce the traffic in the shuffle phase between Map and Reduce, an optional
Combiner UDF can be implemented that allows to pre-aggregate the results on every
machine. In our case the Combiner is identical to the Reduce method and would
emit a single record for B with value 12 on the first node.

The flow of a MapReduce program is static: Map, combine, reduce and materialize
the output to HDFS. To map more realistic or iterative algorithms to MapReduce
one has to chain multiple programs together or use additional constructs such as the
Distributed Cache. The Distributed Cache is designed to broadcast small files to the
local disks of all nodes to make them available in the UDF calls.

2.1.3 Stratosphere & PACT

”
Everything flows - Panta rhei“, Heraklit

This old wisdom describes best the feeling when using Stratosphere for the first
time and comparing it to Hadoop. From a user perspective, the biggest contrast
to MapReduce is that operators such as Map, Reduce and others can be chained
together in a directed acyclic graph (DAG) so that even more complex algorithms
can be expressed in a single data flow.

Stratosphere is an open source software stack consisting of a parallel execution en-
gine called Nephele and a programming model called PACT [4] 10. We explain the

10The system additionally includes higher level interfaces that are not used in this theses and not

15

Stratosphere top-down.

PACT is a programming model based on so called Parallelization Contracts (PACTs)11.
PACTs are second-order functions, and Stratosphere currently supports five of them:
Map, Reduce, CoGroup, Match and Cross. Each PACT has a semantic of how many
instances of the UDF will be started and what part of the input will be passed to
those instances. Figure 6 summarizes the semantics for all PACTs and we shortly
define them informally. We have to mention beforehand that PACT uses a record
data model and the input and output of any PACT is always zero or more records.
A record is comparable to a database row containing objects from any serializable
type. PACT records, however, do not have a schema and fields can only be accessed
by their index.

Map Reduce Cross Match CoGroup

Figure 6: Semantics of the currently available PACTs. Each solid box denotes an input
with multiple records. Each dashed box denotes an independent subset. The UDF gets
called once for every independent subset. The color denotes the value of the key, except for
Map and Cross which have no notion of a key. The graphic were extracted and adopted
from slides created by Stephan Ewen from TU Berlin.

Map and Reduce have the same semantics as in Hadoop. For Reduce, the user has to
specify the index of the record which holds the key to group by. Similar is true for
other contracts that use a key.

CoGroup behaves like a Reduce for multiple inputs. For every group of records with
the same key one UDF instances gets called. The UDF actually receives two iterators
with the records from the first and the second input.

Cross realizes the cross product of two inputs: Every possible pair of records from
different inputs forms the input for the UDF. In fact each side of the Cross can be a
list of inputs.

Match realizes an Inner Join for two inputs, as known from SQL: From all record-
tuples in the cross product of both inputs, those that share the same key form the
input. For each of these inputs one UDF instance gets called.

explained for size constraints. We would have liked to develop SFS in the Scala interface but it was
still under development.

11PACT can mean two things: The whole programming model and a concrete Parallelization
Contract such as Map. It should be clear from the context what we refer to.

16

Up to now we looked at PACTs in terms of their input semantics, called input con-
tracts. Additionally any PACT can be manually annotated to inform the system
about special properties holding for the output. Without these so called output con-
tracts, a UDF is just a blackbox and the system cannot make any assumptions about
the partitioning of the output. Currently ConstantFields(int[] indices) is sup-
ported, stating that every output record has the same values as the input for the
specified positions. In the case where a UDF does not change the key of a parti-
tioned input, the partitioning will be retained for the output. As explained in the
fundamentals, it is important for the system to know about this.

PACTs can be assembled to a DAG with the vertices being the PACTs and their
related UDF and the edges being the connections defining the data flow. A plan has
multiple input source vertices, e.g. a HDFS file, and one or more data sinks vertices,
usually writing to HDFS. Let us look into how a PACT plan comes to execution.

Nephele Job GraphPact Plan

UDF 1

Map

Input A
(hdfs)

Input B
(hdfs)

UDF 2

Map

UDF 3

Match Pact
Compiler

UDF 1

Sink
(hdfs)

UDF 4

Reduce

Input A
(hdfs)

Input B
(hdfs)

Sink
(hdfs)

UDF 2

JobManager

TaskManager

TaskManager

TaskManager

Execute on
Nephele

Hash Join
UDF 3

Sort
UDF 4

Forward,
In-memory

Broadcast,
Network

Local
strategy

Hash Partition,
Network

Shipping
Strategy

Figure 7: From PACT plan to execution, inspired by [4].

PACT Compiler and Nephele. The so called PACT Compiler transforms a
PACT plan into a Nephele Job Graph, which will be executed on the parallel execution
engine called Nephele [42]. A Nephele Job Graph is also a DAG and can be seen as
an optimized version of the PACT plan which additionally specifies the strategies to
fulfil the semantics of the PACT plan.

The central component of the PACT Compiler is the optimizer. The optimizer lives
from the declarative nature of PACT: Each PACT declares the desired behaviour but
not how it is achieved. Similar to a database optimizer it tries to find the execution
plan that minimizes the costs, primarily for network communication and secondarily
for disk I/O. The computation of the costs is non trivial since the UDFs can emit any
number of arbitrary records. We will discuss this during the experimental evaluation

17

and see that Stratosphere often fails to compute the costs and thus makes unfortunate
decisions for SFS.

A prominent example to illustrate the different strategies is a Join (Match contract)
as known from SQL, where a big variety of strategies known from parallel database
systems can be applied, including sort-merge join or hash-based join. In our example
in Figure 7 the optimizer choose to broadcast input A to all nodes over the network,
probably because it is assumed to be small, and executes a hash-based join locally.
Another strategy is to repartition both inputs by the join key, resulting in far more
network traffic if input B is big. For complex PACT plans there can be a big search
space of possible execution plans and the optimizer has a high degree of freedom.
We will see, however, that for other plans such as the SFS algorithm, the degree
of freedom can be very small. The complete discussion of the different execution
strategies would exceed the space and we refer to Battré et al. [4] for a detailed
discussion.

As the final step of execution, Nephele spans the Job Graph over the nodes in the clus-
ter and executes the job. Nephele has a single master process, called JobTracker, and
one or many TaskTracker processes, where the actual execution of the job takes place.
The JobTracker has responsibilities to manage resources, handle failures, schedule
jobs but also to overlook the execution of each job.

The degree of freedom for Nephele is to choose the dop and to choose for each task
a node to execute it. Commonly, however, the dop is manually specified by the
developer in the PACT plan, leaving a very small or even zero degree of freedom for
Nephele.

Our introduction highlights that the PACT programming model and the PACT Com-
piler can be seen as the heart of Stratosphere for two reasons: First, because PACT
yields additional degrees of freedom and the PACT Compiler consumes them to ap-
ply automatic optimizations and to improve performance. Second, because the added
expressiveness shall enable a more natural fit for many problems and thus better user
experience. These two points, visualized in Figure 8, are main distinctions from
Hadoop MapReduce. The upper part will be evaluated during our programming
model evaluation, the lower part during our experiments.

Expressiveness
& Declarativity

Degrees of
Freedom

Better User Exp.
More „Natural“ Fit

Better PerformanceOptimizer

Figure 8: Desired implications of extended expressiveness and declarativity.

18

2.2 Machine Learning and Feature Selection

2.2.1 Machine Learning Basics

The fundamentals for Machine Learning are well established and the information in
this chapter are taken out of standard machine learning text books from Hastie et al.
[21] and Bishop [7].

We will use the example of text categorization to introduce Machine Learning. Let
us assume we have a collection of text documents describing news articles and every
article was manually annotated to belong to the category

”
Economics“ or not. In

machine learning terminology this categorization is called the class, label or target
variable and can be described mathematically as a vector yi ∈ {0, 1}. As an example,
y1 = 0 denotes that the first document is not about economics. Let us now formalize
the input, i.e. the documents: A single document can be described as a vector
xi ∈ RD where D is the size of the dictionary containing all distinct words from all
documents. As an example, the vector

x1 = (0, . . . , 0, 1︸︷︷︸
index 1000

, 0, . . . , 0, 1︸︷︷︸
index 2000

, 0, . . . , 0)T

describes the first document that solely consists of the two words
”
I am“, assuming

that
”
I“ has the index 2000 and

”
am“ the index 1000 in our dictionary. Each doc-

ument is interpreted as a so called bag of words, where the ordering of the words is
ignored and the representation as a vector is done according to the vector space model.
More generally spoken, each dimension of the vector is called feature or independent
variable, which means that features capture all we know about the input. Text is a
typical example of a high dimensional feature space and if we look at the occurrence
of combinations of words, so called n-grams, the feature space can grow into millions.
For example when using 3-grams, all possible combinations of three words form a
feature. Such high dimensional scenarios will be of particular interest in this thesis.

Let us generalize an input of size N to a Matrix X with the rows being the individual
input vectors xi ∈ X . And let us formalize the output to a vector y = (y1, y2, . . . , yN)T

with yi ∈ Y . xi and y are commonly defined as a column vectors and we omit the
vector arrow for simplicity. This input is referred to as the training dataset.

Classification. Now that we defined the input and the labels in a numeric way we
can apply any machine learning algorithm to learn a model that allows us to predict
the category of an unseen document. This discipline is called supervised learning
due to the existence of labels. More specifically it is called binary classification:
Classification because the target space Y is discrete, and binary because Y actually
only consists of zero and one. If the target variable is real valued, e.g. when predicting
the future income of a student based on his grades at university, then the problem

19

is called regression, which is not discussed here. The model we aim to learn is a
function h : X → Y , also called hypothesis, that maps a document to the category
0 or 1. We want the hypothesis to be as close as possible to the so called target
function t : X → Y that always makes the correct prediction but at the same time
is impossible to learn and chronically unknown for most real world problems. How
close we are to the target function is measured by an error function or loss function
which receives the prediction and the true labels to compute a score. A common
and intuitive error function is residual sum of squares, shown next, or negative log
likelihood, which is used for SFS and will be introduced later.

RSS =
N∑
i=1

(yi − h(xi))
2

Generalization. We are especially interested in a hypothesis that has a good
generalization behaviour, i.e. that approximates the target function well for unseen
documents. To train a model that always makes the correct prediction on the training
data is easy: The model, assuming it has enough complexity, could simply memorize
the complete dataset, which is always of finite size. Such a memorizing model would
suffer the problem of overfitting, meaning that it fits the training data too much,
including the irregularities or noise, but performs bad for unseen documents. Even
if the model is not complex enough to memorize all data, it could take into account
too many irrelevant features that might improve the accuracy for the training data
but have only little statistical significance and therefore often describe the noise. The
real generalization behaviour is unknown until the trained model is applied to unseen
data. To get an earlier approximation, the input is usually split into two parts: The
first being used for training and the second for testing, i.e. to evaluate the hypothesis
using the error function. Next we will introduce feature selection which is a central
approach to reduce overfitting and thus improve generalization.

2.2.2 Feature Selection

An extensive introduction to Feature selection is given by Guyon and Elisseeff [19].
We will summarize here what feature selection is, why it is applied and how SFS fits
into this.

Feature selection is the process of selecting a subset of all available features in such a
way that the removed features are either irrelevant or redundant : irrelevant features
do not correlate with the target variable and redundant features bring little or no
improvement because they are usually correlated with other features that were already
selected to be in the model. The training algorithm has less chances to overfit if the
data only has relevant features because we simply removed a lot of irrelevant features,

20

yielding improved generalization behaviour. A second benefit is that the data and
the model become smaller and the time for training and prediction decreases. This is
particular important for high dimensional data such as text. As a third benefit, we
gain insights on the relevance of the features and increase their interpretability.

Training
Algorithm

Training Data
(X, y)

Hypothesis
f: X → Y

Feature
Selection

New Training
Data (X', y)

Figure 9: Feature selection as a wrapper method. The training algorithm is used to assess
the features for usefulness.

Our feature selection algorithm is in the family of wrapper methods. As visualized
in Figure 9 such a wrapper method uses the training algorithm, in our case logis-
tic regression, as a black box to find the most useful features. There are other so
called embedded methods where feature selection is an integral part of the training
algorithm. To give an example, L1-Regularization is often proposed for logistic re-
gression [23, 15] because it produces a sparse model containing only the relevant
features, however the error function is no longer differentiable and so the optimiza-
tion process becomes more complex and difficult to parallelize. A further and more
generic approach to feature selection, better known as dimensionality reduction, is
to project the input into a new and smaller feature space, containing features that
can be used to approximately reconstruct the original input. Principle Component
Analysis and Matrix Factorization such as Singular Value Decomposition are meth-
ods in this field. However, since these methods do not select a subset from existing
feature it is harder to reason about the relevancy of the original features. We refer
to [19] for an in-depth discussion of the various approaches to feature selection and
their tradeoffs.

2.2.3 Logistic Regression

Before we continue with our specific feature selection algorithm we have to introduce
logistic regression, the method for classification that is used in SFS.

Logistic regression has a long history as a statistical technique used in fields like
economics, social science or medicine and is now also recognized as a workhorse of
machine learning [27, 32]. We refer to logistic regression here as a method for binary
classification.

21

● ●● ●● ● ●● ●●● ●● ●●● ● ●● ● ● ●● ●● ●● ●● ●

●● ●●●●●● ●●●● ● ● ●●●●● ●●● ● ●●● ●●● ●

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

● ●● ●● ● ●● ●●● ●● ●●● ● ●● ● ● ●● ●● ●● ●● ●

●● ●●●●●● ●●●● ● ● ●●●●● ●●● ● ●●● ●●● ●

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Linear regression and logistic regression applied to the same single-dimensional
binary classification problem, where the two classes are encoded with 0 and 1. The red
line is the function curve of the hypothesis and the vertical blue line visualizes the decision
boundary. Linear regression was trained using least squares, which is similar to the pre-
viously introduced RSS and minimize the squared horizontal distance from the line to the
points. For logistic regression we used maximum likelihood.

Despite the simplicity of the underlying linear model, logistic regression is a good fit
for large scale high-dimensional data such as text or life science data for two reasons.
First, its qualitative classification performance is competitive to more sophisticated
methods like Support Vector Machines if the number of dimensions is very high [9].
Second, relatively simple and fast algorithms exist for the computation of the logistic
regression coefficients [24, 38].

To understand logistic regression we need to shortly introduce the notion of a linear
model. A linear model is a linear combination of x of the form

hw(x) = w0 + w1x1 + . . .+ wDxD. (1)

The output of this model can be used as a hypothesis and we call it linear regression
then, a method for regression. For a one-dimensional problem it simply describes a
line, as shown on top of Figure 10. Each hypothesis is completely defined by a vector
w of weights, or coefficients, which is why we denote it explicitly as hw. w0 is called

22

bias or intercept term and defines a fixed offset in the prediction. For mathematical
convenience we assume in the following that x is also extended by x0 = 1 so that the
dot product wTx can be used to express the linear model including the bias.

We can now introduce logistic regression as a generalized linear model where the

output of the linear model wTx is fed into the logistic function σ(x) =
1

1 + e−x
which

is also called sigmoid function due to its s-shape.

hw(x) = P (y = 1) = σ(wTx) =
1

1 + e−wT x
. (2)

The logistic regression hypothesis hw(x) can be interpreted as the probability P (y =
1) that x belongs to the positive class 1. The coefficient wi represents the impact
of the i-th feature on the prediction. In a sparse model, after feature selection was
applied, wi should be zero for irrelevant features. We must be cautious, however,
that a feature with weight 2 does not necessarily have to be more important than a
feature with weight 1, since features might have different ranges of values. To fully
understand the meaning of the coefficients of logistic regression we would need to
introduce another interpretation of logistic regression as logit or log-odds model that
is common in statistics. Since we do not use this interpretation we refer to Hastie et
al. for a discussion [21].

We visualize logistic regression and the closely related linear regression in Figure 10.
First, we see that logistic regression successfully handles outliers in the positive class
and leads to a very good decision boundary. Second, we see that the prediction can
be interpreted as a confidence, or probability. Third, we see that logistic regression
can be interpreted as a generalized linear regression, where the logistic function (the
S-curve) is applied to a linear regression curve.

Learning as an optimization problem. Given an input of labeled training data
{(xi, yi)}1≤i≤N , the machine learning problem is to learn the model w that best fits
these data, or equally, to minimize the error functions. There are many error functions
and here we use maximum likelihood. Informally, a maximum likelihood solution is
a model w that maximizes the likelihood L(w) that, given this model, our training
data were observed with their labels. It is equivalent to find the w that minimizes
the negative log likelihood −`(w) = − ln(L(w)), yielding the following mathematical
optimization problem for the training:

arg max
w
−`(w) = arg max

w
−

N∑
i=1

yi ln(hw(xi)) + (1− yi) ln(1− hw(xi)) (3)

Since there is no closed form solution for this problem, iterative methods such as
Gradient Descent, Newton-Raphson or Quasi-Newton methods have to be applied.

23

We use Newton-Raphson, a method that converges faster than Gradient Descent but
is computationally more expensive. Newton-Raphson starts with any initial model
w and improves this model iteratively until convergence, using the first and second
derivative (gradient and Hessian matrix) of the function to minimize. For negative log
likelihood the update rule for the i-th iteration is the following, where E(w) denotes
the error function to minimize:

wi+1 = wi −
∇E(w)

∇2E(w)
= wi −

∇− `(w)

∇2 − `(w)
(4)

What makes logistic regression attractive for large scale problems is that both deriva-
tives have a closed form and can be computed quickly. The derivatives will show up
in our algorithm in the next section.

2.2.4 Scalable Feature Selection

This section summarizes the feature selection approach from Singh et al. [38] that
serves as the use case for our system evaluation and that we already referred to as
SFS.

The intuitive approach to a feature selection wrapper method would train a model
for all possible 2D subsets of D features, evaluate all those models on test data and
choose the subset that is the best compromise of predictive performance and number
of features. Given the high dimensionality of problems like text categorization and the
iterative nature of most logistic regression algorithms, solving 2D logistic regression
problems is not feasible. Singh et al. use three techniques to reduce this to a linear
runtime.

1) Forward Feature Selection. They adopted the well known forward feature
selection technique where we start with an empty model and in every iteration add
the single feature which brings the highest gain when being added to the current set
of features (base model). In the i-th iteration our base model will have i− 1 features
and we have to train D − i + 1 models with dimensionality i. Repeating this nearly
D times still yields a quadratic number of problems.

2) Single Feature Optimization. Singh et al. introduced a new approach to
compute approximate models for the new features: Given a base model and a new
feature to evaluate, the training algorithm keeps all parameters of the base model
constant and only optimizes the single dimension for the new feature. They call this
Single Feature Optimization. Assuming our base model has 50, 000 dimensions and we
want to test another 100, 000 newly designed features, we now have to solve 100, 000
problems of dimensionality 1 instead of 100, 000 problems of dimensionality 50, 000.
As a second step we have to compute the gain metric for 100, 000 approximate models

24

to get a ranking of the features. The last step is to add the best feature to the base
model and retrain the complete base model to remove the error from approximation.
The step of retraining is not discussed by Singh et al. and neither part of this thesis
as it opens a completely new range of topics.

3) Single-Pass training and validation. We saw that for the feature evaluation
of D new features we still have to run D single dimensional training algorithms and
the same number of gain computations. This is where parallelism comes into play,
and Singh et al. showed that the training and the evaluation can be done in a single
pass over the training and the test data. We will come back to this when we discuss
the parallel implementations for Stratosphere and Hadoop and now focus on the
algorithm.

Up to now we described SFS as a forward feature selection method, where we build a
complete model from scratch. According to Singh et al. and Konda et al. [25], how-
ever, feature selection is often an iterative process where features are being designed
and evaluated and an existing model is improved by adding or removing features.
Similarly, Anderson et al. describe feature engineering as an “interaction loop of
Explore-Extract-Evaluate” [3]. SFS can be used in such a setting to quickly and
efficiently evaluate and rank a large set of new features regarding their usefulness.
Furthermore this ranking gives deep insights into the usefulness of individual features
and thereby increases domain knowledge. In our introduction we used the example of
an online learning system to motivate this. This ranking is what makes SFS special,
compared to an embedded algorithm that only emits a single set of features that are
all considered somehow useful.

Algorithm 1 defines a single SFS iteration. The first input is a training and test
dataset with D dimensions, containing the features that are already in the base
model as well as the new features to be evaluated. Additional input is the current
base model w and a set of new features Dnew to be evaluated, defined as a vector
holding all indices of the new features. The base model has D dimensions, but will be
zero for all dimensions defined in Dnew. The first output is a weight vector w where
the dimensions defined in Dnew contain the trained coefficient. The second output is
a vector of gains, where gaini is the approximate increase of log likelihood we obtain
if we add the i-th feature to the base model.

The algorithm incorporates the previously introduced methods of logistic regression
and Newton-Raphson. hw(xi) is the logistic regression prediction for xi using the
base model, according to the definition in Equation 2. As a special notation, hd(xi)
denotes the prediction for xi when extending the base model by the coefficient we
trained for dimension d. wd denotes the base model extended by the coefficient
trained for d, and the trained coefficients are stored in wnew. ∇dE(w) and ∇2

dE(w)
are the first and second partial derivatives of the negative log likelihood function from

25

Equation 3 with respect to the d-th dimension. This is the actual implementation
of Single Feature Optimization, and indeed the optimization of single dimensions is
what makes this algorithm feasible. Both derivatives are scalar values as we see in
Algorithm 1, whereas the partial derivative with respect to the complete base model
w is a matrix of size D ×D that is expensive to compute and invert.

The function Train, as defined below, requires |Dnew| · I scans over all training data,
where I is the average number of iterations for Newton-Raphson12. For now we stay
with this non-scalable version of the algorithm and we will see in Chapter 3.1 how
we can bring this down to a single scan over the data.

Algorithm 1 Sequential version of SFS

function ForwardFeatureEvaluation({(xi, yi)}tra, {(xi, yi)}tes, w,Dnew)
wnew = Train({(xi, yi)}tra, w , Dnew)
gains = Evaluate({(xi, yi)}tes, w, wnew , Dnew)
return (wnew, gains)

end function

function Train({(xi, yi)}, w,Dnew)
for all d ∈ Dnew do

Train feature d using Newton-Raphson and Single Feature Optimization
while wd did not converge do

d1 = ∇dE(w) = ∇d − `(w) = −
∑N

i=1 xid(yi − hd(xi))
d2 = ∇2

dE(w) = ∇2
d − `(w) =

∑N
i=1 x

2
idhd(xi)(1− hd(xi))

wd -=
d1
d2

(Newton-Raphson Update)

end while
end for
return w

end function

function Evaluate({(xi, yi)}, w, wnew, Dnew)
llbase = `(w) = ln(L(w)) =

∑N
i=1 yi ln(hw(xi)) + (1− yi) ln(1− hw(xi))

for all d ∈ Dnew do
Compute gain in log-likelihood for feature d
lld = `(wd) = ln(L(wd)) =

∑N
i=1 yi ln(hd(xi)) + (1− yi) ln(1− hd(xi))

gainsd = lld − llbase
end for
return gains

end function

12Newton-Raphson converged after a few iterations, usually less than five, in the examples we
looked at.

26

2.3 Related Work

In this section we will give a short survey of related work. Thereby we focus on
the intersection of Parallel Data Processing Systems, machine learning and feature
selection. We add many references as a footnote to avoid blowing up the list of
references. All mentioned websites were accessed in October 2013.

Related Systems. There are a couple of systems with objectives comparable to
Stratosphere. We also refer to Sakr et al. [37] who recently published a comprehensive
survey of “the family of MapReduce and Large Scale Data Processing Systems”.
Spark [45] is a cluster computing system centered around so called resilient distributed
datasets (RDDs), which are distributed datasets held in memory to enable iterative
algorithms such as machine learning and interactive applications. RDDs can be used
as a data structure inside regular Scala programs (driver) offering operators like map,
filter or reduce that receive a custom function and yield either a new RDD or send the
results to the driver program. What makes Spark interesting in comparison to PACT
is that RDDs are designed to be embedded in arbitrary programs that might include
control structures or even interact with the user, whereas a PACT plan describes
a single data flow graph that is executed as a whole on the cluster. The current
research interests of Spark include stream processing, efficient fault tolerance and
data analysis frameworks on top of Spark, which will be mentioned soon.

Further related systems include ASTERIX [5] and SCOPE [46], both trying to com-
bine the strengths of parallel databases and Big Data technologies like Hadoop. Sim-
ilar to Stratosphere, both are based on separate execution engines (Hyracks and
Dryad) and both incorporate a compiler trying to find the most efficient execution
plan for higher level queries. The authors of ASTERIX give a broad survey of research
challenges [5], including “modern storage and indexing”, “text data and queries” and
“dynamic parallel query processing”. The latter one will become interesting in our
discussion of the PACT Compiler. While the first papers did not mention machine
learning, a more recent paper from 2012 [8] introduces a machine learning framework
on top of Hyracks based on an “Iterative Map-Reduce-Update” model and a Scala
based high level machine learning language, which could be used to implement fea-
ture selection or logistic regression. SCOPE is a system used at Microsoft offering
a SQL-like declarative scripting language with C# integration for custom operators.
Similar to what the authors of ASTERIX propose, the SCOPE optimizer leaves some
decisions to runtime to enable dynamic optimizations.

Apache Tez13 and Apache Drill14 are two systems under development for Hadoop

13See http://hortonworks.com/hadoop/tez. The website describes that Tez “generalizes the
MapReduce paradigm to a more powerful framework for executing a complex DAG of tasks” which
reads like Stratospheres initial design.

14See http://incubator.apache.org/drill.

27

http://hortonworks.com/hadoop/tez
http://incubator.apache.org/drill

Yarn with similarities in the architecture to Stratosphere. Both are targeted to be a
low latency execution engine to execute higher level languages such as Apache Hive15,
Apache Pig [33] or Cascading16, which are currently compiled to Hadoop MapReduce
jobs. Apache Pig and Cascading could have been also used to implement SFS. Lin and
Kolcz [30] used the UDF capabilities of Apache Pig to implement machine learning
frameworks for Twitter on top of Hadoop. Cascading offers a workflow oriented API
for arbitrary data processing with operators such as Merge, GroupyBy, CoGroup and
HashJoin yielding a DAG comparable to PACT plans.

Scalable Machine Learning and Feature Selection. Let us now discuss some
frameworks dedicated to scalable machine learning. MLBase [26] is a recently pub-
lished machine learning framework on top of Spark aiming to hide the complexity of
Machine Learning and its scaling from the user. It offers a high level machine learning
language including functions like doClassify(X,y) and findTopFeatures(data),
the latter coming very close to the SFS algorithm. Apache Mahout17 is a library for
scalable machine learning running on top of Hadoop MapReduce. Besides Clustering,
Recommender Systems and Classification it contains algorithms for dimensionality
reduction, but not for feature selection. Mahout also contains a Java library for
sequential matrix and vector arithmetic, which we used for the implementation of
SFS. SystemML [17] is another machine learning framework from IBM that compiles
jobs to MapReduce. It exposes the “Declarative Machine learning Language” with
an R-like [35] syntax offering mathematical constructs e.g. for linear algebra, but we
are not aware of any built-in logic for feature selection. Other related frameworks
we only like to mention briefly include GraphLab18, a C++ based framework, and
MADlib19, aiming to execute machine learning tasks on parallel databases.

Since machine learning is a lot about statistics, a recent approach is to make the
established statistical R language scalable. Several commercial database systems
including SAP HANA20 and Oracle R Enterprise21 support the execution of R on
their database. We already mentioned that the syntax of SystemML is also based on
R. Konda et al. [25] short ago prototyped an R-based feature selection framework
running on Oracle R Enterprise. They understand feature selection as an “iterative,
ad-hoc and a subjective process that is driven largely by a user’s understanding
of the entities under consideration”. They provide the operations they identified
to be important for this process, including forward and backward feature selection,

15See http://hive.apache.org.
16See http://www.cascading.org.
17See http://mahout.apache.org.
18See http://graphlab.org.
19See http://madlib.net.
20See http://help.sap.com/hana/SAP HANA R Integration Guide en.pdf.
21See http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/

index.html.

28

http://hive.apache.org
http://www.cascading.org
http://mahout.apache.org
http://graphlab.org
http://madlib.net
http://help.sap.com/hana/SAP_HANA_R_Integration_Guide_en.pdf
http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/index.html
http://www.oracle.com/technetwork/database/options/advanced-analytics/r-enterprise/index.html

manual addition or removal of features, and training and scoring models using logistic
regression (see Table 1 in their paper). Although they do not cover unstructured data
and high dimensional problems, their work is closely related to SFS and gives a good
impression how feature selection can be applied in real world scenarios.

At last, we would like to mention a group of well established tools for machine learn-
ing and data mining that are limited to a scaleup22: Libsvm and liblinear23 both
support embedded feature selection via L1-regularization. Weka24 additionally sup-
ports wrapper feature selection. The Python library scikit-learn25 supports a wider
range of feature selection approaches26, but we did not find a wrapper or forward
feature selection approach such as SFS.

22Most of the tools make use of in-memory techniques. This makes them a good fit for smaller
and medium sized datasets. Some might even incorporate a multi-threading approach, but we did
not analyse this.

23See http://www.csie.ntu.edu.tw/∼cjlin/libsvm and http://www.csie.ntu.edu.tw/∼cjlin/
liblinear.

24See http://www.cs.waikato.ac.nz/ml/weka.
25See http://scikit-learn.org.
26See http://scikit-learn.org/stable/modules/feature selection.html.

29

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.cs.waikato.ac.nz/ml/weka
http://scikit-learn.org
http://scikit-learn.org/stable/modules/feature_selection.html

3 Comparing Parallel Programming Models

This chapter presents a qualitative evaluation of Hadoop and Stratosphere with re-
gard to their programming models. We proceed as summarized in Figure 11: First,
we transform the sequential version of SFS into a scalable version and afterwards we
evaluate how well it could be mapped to the programming models and discuss both
implementations.

Sequential version

MapReduce
Implementation

Scalable version

eval
uate

evaluate PACT
Implementation

Figure 11: Strategy for the programming model evaluation for SFS.

3.1 Making Feature Selection Scalable

When we started to design SFS using PACT we tried to free our mind of the solution
using MapReduce given by Singh et al. and also tried to ignore the specific contracts
that are offered by PACT. Instead we searched for an intuitive and abstract scalable
solution for the SFS problem. Given such scalable algorithm we can evaluate how
naturally the algorithm can be expressed in MapReduce and PACT. Often this step
is skipped by going directly from the problem to the implementation in the specific
programming model, as done by Singh et al. Adding this step explicitly has some
advantages: It enables a fair comparison, results in a better understanding of SFS
and gives us a notion of what an ideal programming model for SFS would look like.

Starting point is the sequential SFS algorithm as defined in Chapter 2.2.4, which
seems far away from being a scalable algorithm. Algorithm 2 is a copy of the Train
function in Algorithm 1 with an explicit loop for the computation of the sum and
explicit formulas. For clarity we only analyse the Train function in detail in this
chapter because the ideas for the Evaluate function are the same. This new version
already incorporates a first optimization to exploit the sparseness of the data: For
the training of feature d only the records that have a non-zero value in this dimension
are relevant. This highly reduces the number of records that are considered for the
computation of the derivatives, however, we still have to scan over all records in this
version.

In the next transformation, described in Algorithm 3, we aim to meet the require-
ments of a scalable algorithm and limit ourselves to a single scan over the data. For
this we assume infinite memory and use an associative array (Map) data structure

30

Algorithm 2 A more explicit sequential version of SFS Train, exploiting sparseness

function Train({(xi, yi)}, w,Dnew)
for all d ∈ Dnew do

while wd did not converge do
double d1 = d2 = 0
for all (xi, yi) ∈ {(xi, yi)} where xid 6= 0 do

ai = w · xi (constant in all iterations, only place where xi is used)

p′i = hd(xi) =
1

1 + e−(ai+wd·xid)

d1 = d1 + xid(yi − p′i)
d2 = d2 − x2id p′i(1− p′i)

end for

wd = wd −
d1
d2

(Newton-Raphson Update)

end while
end for
return w

end function

to cache all the data we need for the subsequent training. The training itself is com-
pletely done in memory27. Looking at the variables used inside the inner for-loop of
Algorithm 2 we can derive what we need to cache for the training: For dimension d
we need the values (xid, yi , ai) for every record having feature d. It is interesting to
note that it is sufficient to store the precomputed values w · xi instead of the whole
vectors xi, which is due to Single Feature Optimization where the optimization is
only concerned about a single dimension and the rest is fixed. A last change is that
Dnew is no longer needed, which eases the use of SFS. It is derived whether a feature
is new by testing if it is already in the base model. This was not possible before since
the algorithms iterated over Dnew. Dnew could be easily included if one does not want
to evaluate all features in the input.

Let us briefly look at the memory requirements and runtime for Train. The memory
footprint for the Map data structure depends on the number of non-zero fields in
the input {(xi, yi)}: Every non-zero field xid is stored exactly once, together with the
value of w ·xi and yi. Also the runtime depends on the number of non-zero values in a
linear way: For every non-zero value, one value is written to the cache, and the inner
loop of TrainSingleDimension is executed I times for every cache entry, where I
is the average number of Newton-Raphson iterations. Similar observations apply to
the Evaluate method in Algorithm 4. This highlights that it is useful to characterize
datasets by their sparseness, i.e. by the number of non-zero values.

27This is in fact a technique used by machine learning software such as Weka or Liblinear to
efficiently implement iterative learning algorithms.

31

The same idea of exploiting sparseness and using an in-memory data structure can
be applied to Evaluate. The reason why we can exploit sparseness here is that for
the computation of the gain in likelihood for feature d, we only need to consider the
records containing d, since for all other records the likelihood will be unchanged. The
result is shown in Algorithm 4 for completeness.

Algorithm 3 A scalable version of SFS Train that can be parallelized easily.

function Train({(xi, yi)}, w)
Single pass: Cache everything needed for training in memory
Map cache = new Map(d, [(xid, yi, w · xi)])
for all (xi, yi) ∈ {(xi, yi)} do

for all xid ∈ xi where wd = 0 do
cache.add(d, (xid, yi, w · xi))

end for
end for
Train all dimensions in-memory
Vector wnew

for all d ∈ cache.keys do
wnew,d = TrainSingleDimensionNewton(d, cache.get(d))

end for
return wnew

end function

function TrainSingleDimension(d, cached-records)
int wd = 0
while wd did not converge do

double d1 = d2 = 0
for all (xid, yi, w · xi) in cached-records do

p′i =
1

1 + e−(ai+wd·xid)

d1+ =
∂Li

∂wd

= xid(yi − p′i)

d2− =
∂2Li

∂wd

= x2idp
′
i(1− p′i)

end for

wd -=
d1
d2

(Newton-Raphson Update)

return wd

end while
end function

32

Algorithm 4 A scalable version of SFS Evaluate.

function Evaluate({(xi, yi)}, w, wnew)
Single pass: Cache computed log-likelihood gain in memory
Map cache = new Map(d, gain)
for all (xi, yi) ∈ {(xi, yi)} do

llbase = yi ln(hw(xi)) + (1− yi) ln(1− hw(xi))
for all xid ∈ xi where wd = 0 do

lld = yi ln(hd(xi)) + (1− yi) ln(1− hd(xi)) (hd accesses wnew)
cache.add(d, lld − llbase)

end for
end for
Sum up gains of likelihood
Vector gains
for all d ∈ cache.keys do

for all gain ∈ cache.get(d) do
gainsd = gainsd + gain

end for
end for
return gains

end function

An ideal programming model. Algorithm 3 is very friendly to data parallelism
because the for loops over the input and over the features have almost no side effects.
An ideal28 parallel programming model for our use case would not require to rewrite
the algorithm at all and parallelize it automatically by executing the code inside
the loops in parallel for different parts of the data29. We would need only a few
assumptions: First, we need to operate on a specialized Map data structure that
allows concurrent additions for the same key. In the same way we need to be able
to write to a vector wnew, however, there we do not need support for conflicting
write access since every coefficient is written to only once. Second, if we move the
code inside the for-loops into separate functions, or UDFs, to be executed in parallel,
every parallel instance needs a reference to the base model w. This is a free, or
non-local variable for the anonymous function and we need to make it available, as
it is supported by closures in functional programming languages. The same applies
to the trained coefficients wnew which have to be made available in the first for-loop
of Evaluate. When we write about closures in the following, we refer mainly to the

28The notion of what is ideal is to a certain extend subjective, but it is difficult to avoid subjectivity
in a qualitative evaluation. Important to note is also that ideal only refers to our use case.

29The Matlab programming language has built in support for such automatic parallelization: A
loop can be parallelized using data parallelism and multithreading simply by using parfor (parallel
for) instead of for.

33

ability of a UDF to access variables that become non-local variables after moving the
code inside the loops into UDFs. In general, closures also describe the function itself
having such capabilities, but the main motivation of closures was to enable the access
to variables of the environment [40]30. Finally, we must be aware of the limited space
for pipeline and task parallelism because the cache has to be populated completely
before we can use the cache.get(d) in training and so we need a synchronization
barrier between the for-loops.

Evaluation methodology. Now as we defined SFS as a scalable algorithm and we
developed the notion of an ideal programming model for SFS we can evaluate how
well, or naturally, it can be expressed by using MapReduce and PACT. For this we
will look at multiple criteria, the most important being expressiveness. This com-
prises that the system should offer constructs allowing us to express our algorithm
declaratively, i.e. in a way that is not over or underspecified. We saw in the last
paragraph that this is possible when we imagined a parallel programming model that
offers a data structure and operators on it with additional support for closures. This
gives the system degrees of freedom to choose a good parallelization strategy such
as distributing the data structure and running the operators in parallel, or even a
shared memory multi-threading approach. The system should offer such constructs
for all places where data, task, pipeline parallelism or any other optimization can
be applied. A second criterion will be compactness and readability, describing how
close the resulting code is to the original algorithm in visual terms. As a last crite-
rion we shortly look at the overall user experience, including the actual process of
development.

3.2 Scalable Feature Selection on MapReduce

The question for this section is how well the previously defined scalable algorithm can
be expressed using Hadoop MapReduce. The implementation, which was described
by Singh et al. and implemented before the thesis, is visualized in Figure 12. SFS
can be accessed from a single Java class, the driver, which owns the base model and
internally runs the Hadoop jobs to compute the gain for new features. The driver
can be instantiated within any JVM-based application that has a network connection
to the cluster. We begin our evaluation with the positive impressions and relativise
these afterwards.

Ignoring Hadoops implementation of MapReduce for a moment, Map and Reduce turn
out to be excellent constructs to express SFS in. With a slightly different vocabulary

30We found that the authors of Spark also refer to closures in a similar meaning when writing
about their shared variables concept: “Programmers invoke operations like map, filter and reduce
by passing closures (functions) to Spark. As is typical in functional programming, these closures
can refer to variables in the scope where they are created.” [45]

34

Training Job

Input Train
(hdfs)Train

Map
Driver

Methods:
- computeGains()
- addBestFeatures(int n)

Train

Reduce

Base model
(dist. cache)

Input Test
(hdfs)

Evaluation Job

Evaluate

Map

Evaluate

Reduce

Trained
Coefficients

(hdfs)

Base model
(dist. cache)

Gains
(hdfs)

Figure 12: Job Graph for SFS using Hadoop MapReduce.

we can read the Train function as if it was already specified in MapReduce: Map is
equivalent to the for-loop over the input dataset and applies the code inside the loop
to all data records. The output of Map is equivalent to the associative array. Finally,
Reduce runs an aggregation, the training, for every key in the cache and the output
of Reduce is our vector with the trained coefficients. The same ideas apply to the
Evaluate function. This looks very close to what we described as an ideal parallel
programming model for our use case in the last section. Furthermore, the plan in
Figure 12 is a great high level visualization of SFS, showing the dependencies and
the output of the different phases. One might say that it is just coincidence that
the static chain of Map and Reduce fits our needs, or that SFS was designed to fit
MapReduce, but we think that both are very powerful primitives for parallelization,
maybe the most important ones, because processing, grouping and aggregating is
such a common task. This view is supported by the fact that Borkar et al. suggest
a scalable machine learning framework [8] that is solely based on Map, Reduce and
iterations. This positive impression has to be relativised for multiple reasons.

Verbosity, limited expressiveness and media disruptions. These are the

35

three main weaknesses we identified and in the following we will explain where we
encountered them.

To express the algorithm in MapReduce one has to create multiple Java classes and
split up the algorithm into many different parts. This makes it significantly harder
to understand and maintain the program, a problem summarized by us as verbosity,
the opposite of compactness. Since Hadoop jobs are hardcoded to consist of a Map
followed by a Reduce and since there is no support for chained jobs we have to split up
the algorithm into two Hadoop jobs and need to add a separate Java class (Driver) to
execute them in a sequence. Both Hadoop jobs have to be further divided into three
classes: One for the Map UDF, one for Reduce and a third for the job itself. Part of
the problem is that Hadoop uses Java, which has very limited support for functional
programming and is itself known for its verbosity. Verbosity can be resolved to a
certain extent by using a higher level language such as Cascading or maybe Apache
Pig. We find, however, that it is a bad user experience that Hadoop does not directly
offer a concise programming model and instead puts the burden of finding a suitable
and mature language on the user.

A second main problem arises since we need to make the base model object available
in both Map UDFs via any kind of closure. In the same way, the output of the
training phase needs to be available in the Evaluate Map UDF. As a limited expres-
siveness, Hadoop does not offer a direct construct for this. Instead one has to use the
Distributed Cache that is designed to broadcast arbitrary files to all nodes before a
job is executed. The Distributed Cache is one of the places where what we call media
disruption occurs: Instead of working with the constructs of the programming model
at a single place, the user has to write custom code in different classes to serialize
the base model object to a file and to read it in the UDF. Additionally, due to its
multi-purpose design the Distributed Cache removes the knowledge of what actually
is transmitted and thereby removes any degrees of freedom for the system. In our
case this means that the system does not detect that we transfer the same base model
object to both jobs and therefore has to transmit it twice.

A further weakness related to limited expressiveness arises if we want to support
multiple iterations to implement forward feature selection. Since there is no support
for iterations the user is forced to implement a separate driver for this. We call this
approach driver iterations. To run a single iteration of forward selection, one has to
call computeGains(), which runs the training and evaluation job in sequence and read
the results from hdfs, followed by addBestFeatures(1), which adds the feature with
the highest gain to the base model. This lack of native iterations adds complexity,
but more importantly it removes the degree of freedom to cache the input, which is
constant in all iterations, in memory.

User Experience. During the thesis we adapted the existing Hadoop SFS imple-

36

mentation to operate on Yarn and to be executed automatically for the experiments.
Since the Java API of Hadoop is constantly evolving, it was sometimes difficult to
find out how to do simple things such as running a job on a cluster or loading the
data for the experiments into hdfs programmatically. For such tasks it is common
to use shell scripts and the command line interface of Hadoop, however this would
mean yet another media disruption. Another disruption in the development process
is the need to build a jar file first in order to run a job on the cluster.

3.3 Scalable Feature Selection on PACT

One design goal of Stratosphere is to overcome the shortcomings of MapReduce. In a
comparison paper of PACT and MapReduce the authors of Stratosphere claim that
the improvements over Hadoop MapReduce such as the more expressive programming
model yield a better performance and a better experience for the programmer [2]. In
this section we re-evaluate the second part of this claim for SFS. We will begin
to shortly explain relevant parts of our implementation and discuss the strengths
and weaknesses we identified afterwards. The complete list of issues we identified,
including several bugs, contains more than 30 issues and we can only present the
most important here.

We implemented two versions of SFS for Stratosphere: Driver iterations, similar to
Hadoop, and native iterations, using the built-in iteration support of Stratosphere.
The driver iterations version was written to be comparable to Hadoop and to de-
termine how big the performance gain of native iterations is. It can be accessed
via a driver implementing the same methods as the Hadoop version. We list the
constructor arguments of the driver in Table 9 in the Appendix. They include the
specification of the input, the settings for Newton-Raphson optimization and the in-
formation about where to run the job. The native iteration version, shown in Figure
13, uses the Stratosphere bulk iteration feature [13] to implement forward feature
selection. It can be accessed by the forwardFeatureSelection method. Every bulk
iteration produces a complete new partial solution, which is in our case the new base
model extended by the k features with the highest gain, where k is configurable. One
main benefit from iterations, besides expressiveness, is that the system detects that
the training and test input are constant in all iterations and thus it is free to keep
these in main memory. Furthermore, the job has to be started once only for many
iterations, which reduces the startup overhead.

Let us give a short overview of the PACT plan. If we ignore the non-bold nodes, we
can recognize the similarity to the MapReduce solution, except Cross instead of Map
is used and the contract “Apply Best” is added to extend the base model with the
best features at the end of a single iteration. The Match UDF is used to join the
trained coefficient and log-likelihood gain for each feature, so that “Apply Best” has

37

Train

Cross

Train

Reduce

Workaround
(Flatten to 1)

Reduce

Workaround
(Make 2 to 1)

Cross

Match Gains
and Coeff.

Match

Evaluate

Cross

Evaluate

Reduce

Input Train
(hdfs)

Input Test
(hdfs)

Partial Solution
(Base Model)

Initial
Base Model

Apply Best

CoGroup

Driver

Methods:
- computeGains()
- addBestFeatures(int n)
- forwardFeatureSelection(
 int iterations,
 int addPerIteration)

Figure 13: PACT plan and driver for SFS using the bulk iterations feature. The plan
as shown will be executed by the driver method forwardFeatureSelection. The other
methods implement driver iterations, similar to the Hadoop version. The plan for driver
iterations is the same, except that it has no partial solution and ends after the Match node.

a convenient input. As in the MapReduce version, the code within the Train and
Evaluate UDFs is analogous to the body of the for-loops of the scalable algorithm.
The differences marked as “workaround” will be explained in a moment and we now
begin with the evaluation.

“Everything flows”. Being able to express our algorithm, including iterations, as a
single job without leaving the constructs of PACT is the highest gain in expressiveness
compared to MapReduce. We found that this greatly improves the user experience

38

since there is no more media disruption like manual chaining of jobs. Additionally
the system has, at least theoretically, new degrees of freedom to choose from different
execution strategies due to a more holistic view of the job. We also found that the
addition of Cross, CoGroup and Match is a good trade-off between expressiveness
and added complexity since the new constructs add a clear value and are relatively
easy to understand, not least because they operate on the same level of abstraction
as Map and Reduce. We found that the naming, however, could be more intuitive31.
Similar to MapReduce, we found that PACT offers a good level of abstraction to write
data processing tasks. To conclude, looking at what was added in PACT compared
to MapReduce, we think that the benefits outweigh the added complexity. There are,
however, some important things missing so that the overall picture is different.

Limited Expressiveness. The most significant shortage we identified is that
PACT does not support closures and neither offers a construct like the Distributed
Cache to be used as a workaround. The only way to solve this is to use Cross as a
workaround in the following way: If we need to make a single record, such as the base
model, available in a Map UDF, one can use Cross instead of Map with the second
input being the base model. We consider Cross to be an unfortunate workaround for
five reasons: First, it can be only applied to add closure support for Map. It was sur-
prising to find that there is no way to make the context of a previous output available
in a subsequent Reduce, Match or CoGroup, to the best of our knowledge. Second,
it only works if the non-local variable is a single record and not a list of records. The
first Evaluate UDF needs the output of the training phase, which is such a list of
records, and therefore we had to write the Reduce workaround “Flatten to vector”
to merge all trained coefficients to a single record. Third, it can be only applied if
we have a single non-local variable because Cross is limited to two inputs. For this
reason we had to introduce the workaround contract “Make 2 to 1” that makes a
single record out of two. Fourth, it is computationally inefficient because in every
UDF call we receive a tuple (xi, non-local-variable), where the non-local variable has
to be copied by the system for every call, despite being constant. Fifth, we consider
closures to be a more intuitive description of what our original intention was than
Cross. This opinion, however, depends on our view of an ideal programming model
and on the way we specified our scalable algorithm.

Let us briefly discuss possible approaches for closures. More practical for us would
have been a way to broadcast and attach the output of any contract as a preliminary
input to a specific UDF. Each UDF instance could process the additional inputs first
and store them in main memory. Figure 14 visualizes this approach. It is comparable
to the Distributed Cache, with the difference that the user does not have to read from
files. A problem arises if there is a large number of small records to be broadcasted,

31For users familiar with SQL, Join would more intuitive than Match, and CoGroup does not tell
that it is a special case of Reduce for multiple inputs.

39

Input Train
Train

Reduce

Evaluate

All-Reduce
Input Test

Broadcast / Attach

...

Figure 14: One approach to closures by broadcasting and attaching. This example shall be
representative for the cases where the output of one UDF is required in a subsequent UDF
other than Map. It has two phases: The first trains a model, e.g. a vector, and the second
evaluates the accuracy of this model. All-Reduce is a Reduce where all items are sent to a
single group.

like it is the case for the Reduce UDF in the training phase: It may emit millions of
PACT records, each consisting solely of a single trained coefficient and the index. To
avoid this overhead one could offer a machine learning specific data model so that
the Reduce UDF can write in a distributed way to a vector, which would be much
closer to our original intention. Such vector could be broadcasted and attached very
efficiently as a single object32. In an ideal scenario, the system would be aware of the
semantics and vector arithmetics within the UDF and decide whether it is feasible
and fortunate to broadcast the whole object or whether it is better to use a join to
realise the dot product33. We decided to broadcast the vector as a whole because
even for very high dimensions the vector will fit into memory and there is currently
no efficient support from Stratosphere for system-based vector arithmetics.

The full discussion of this and other approaches is out of scope for this thesis, since
it raises a few more questions, for example how the system handles the additional
dependencies arising from the attached outputs, as we see in Figure 14. We suggest
that more use cases need to be analysed to find an appropriate solution. It is inter-
esting to note, though, that the notion of closures only arises from the way we defined
SFS as a scalable algorithm. This gives a different perspective on SFS that is more
data and data structure oriented. In contrast, PACT appears more data flow and
UDF oriented. As an example, the in-memory cache of Train was a central part of
the scalable algorithm but becomes almost invisible in PACT: It is the equivalent to
the intermediate output of the Train Reduce UDF, stored in schemaless records as we
will discuss soon. The Hadoop plan appears to be more informative, since the output
of the first job is written to a file, with a well defined schema. The introduction
of higher level interfaces such as a Scala interface will change the perspective to be

32We simulated this behaviour with the “Flatten to 1” UDF.
33This thought is based on discussions with Sebastian Schelter and Alexander Alexandrov from

the DIMA group, who both reminded of the fact that for a dot product of two sparse vectors, only
the coefficients that are in both vectors need to be joined, multiplied and summed up afterwards.
In this way, broadcasting the whole vector can be seen as a shortcut.

40

closer to our ideal programming model.

We shortly like to mention further shortcomings regarding expressiveness. First, the
system is designed to read input from files, and it not well support to embed the
job execution in an external driver application and use an object from runtime, such
as our base model, as input34. This can be also interpreted as a limited support for
closures, since objects or variables from the driver are non-local variables in the UDFs.
Second, there is no keyless CoGroup where all records from both inputs are streamed
into a single UDF instance, as we would have needed it for the “Apply Best” contract.
Although the PACT Compiler has an extensible architecture, it is non trivial to add
such new PACTs. A third limitation is the lack of global counters. Hadoop offers
such counters that can be incremented in any UDF and read in the client after the
job ended. Hadoop automatically collects many useful information via these counters
such as number of records emitted in the different phases. Custom counters are very
useful for debugging, performance analysis and to extract information such as number
of non-zero values. Counters can also be interpreted as support of closures: A counter
is a variable in the driver that is defined outside the UDF but accessed inside. We
propose to additionally support global histograms, for example to quickly analyse the
distribution of the number of Newton-Raphson iterations needed in SFS.

Verbosity. Stratosphere suffers from the same problems as Hadoop regarding ver-
bosity. There is one class describing the plan, one for each UDF and in our case
one for the driver, splitting the algorithm into many parts. The workarounds for
closures make the plan overall even worse readable than the MapReduce plan. There
are currently more concise high level languages under development, such as a Scala
interface, which will probably improve the situation.

Schemaless records and UDFs. The sparse and schemaless record model of
PACT has positive and negative aspects. It greatly simplifies the transfer of struc-
tured data such as two numeric values: In Hadoop we need to write a special seri-
alizable class containing nothing but the two values. However, it implies that UDFs
are also schemaless, in the meaning that they do not specify what input they expect,
what output they produce and which fields the input and output values reside in.
The only way to derive the implicit schema of an UDF is to rely on code documenta-
tion or to read the UDF completely. As stated earlier this is in contrast to our ideal
programming model where the cache data structure has an explicit type. This also
contrasts to Hadoop where the signature of the UDF completely specifies the schema
and where there is no risk to mix up the field indices. To highlight that all our UDFs
have a static schema we introduced public fields such as IDX INPUT2 BASEMODEL=0,
stating that the basemodel is assumed to be stored at field 0 in the second input. We
added the Evaluate Map UDF for Hadoop and Stratosphere in Listing 1 and 2 in the

34We wrote two extensions for this purpose, which can be found in the classes
RecordSequenceInputFormat and SingleValueDataSource.

41

appendix to document this.

Immaturity, Traps and Bugs. We spent a significant amount of time with bugs
or at least traps, since Stratosphere is still under development. To give an example,
we tried to use the keyless Reducer, also known as AllReducer, where all records
from the input are forwarded to a single UDF instance, but it yielded an unspecific
error message. This bug was fixed, but after a while we found that the plan visu-
alization does not work for keyless Reducers. This bug was also fixed, but during
the implementation of native iterations we received an unspecific error message, that
all contracts inside the iterations must have the same dop. After some debugging
we realized that for the keyless Reducer the dop is automatically set to one and we
finally had to use a workaround that does not use the keyless Reducer. Another main
problem we faced was the complexity of the build system of Stratosphere that did
not support different hadoop versions. A last problem is the lack of profiling and
performance analysis tools, which is related to the lack of counters. Information such
as in which UDF the most time was spent or whether the data fit into memory are
important when writing a more complex program, since the user mostly also has some
degrees of freedom to optimize the UDFs. Although thesis issues are less interesting
from a scientific perspective, the system has to overcome them to be competitive
regarding the user experience.

We summarize the results of our programming model evaluation in Table 7 in the
conclusion, to present them together with the results from the experimental evalua-
tion.

42

4 Experimental Evaluation

The goal of this section is to compare Hadoop and Stratosphere regarding their
speedup and scaleout behaviour for the SFS algorithm. We start by explaining our
hardware and software environment, continue by describing the two high dimensional
datasets used and finally discuss the experiments and their results. In these exper-
iments we will vary the cluster size, the size of the dataset and other interesting
dimensions such as the number of iterations.

4.1 Experimental Setup

Hardware Environment. All experiments were executed on a cluster of 26 iden-
tical machines and one additional machine that served as the master. Each slave
machine has two AMD Opteron 6128 2GHz CPU with 8 cores, 32 GB of RAM, 4
separate disks with 1 TB each, connected with gigabit ethernet. The master machine
has two Intel Xeon E5620 2.4GHz CPU with 4 cores and hyperthreading enabled, 48
GB of RAM, and a RAID 5 array of 850 GB.

Software Versions. We used Hadoop version 2.1.0-beta, the latest version at the
time of writing. We choose Hadoop YARN because it will be the successor of Hadoop
1.0 and any results for Hadoop 1.0 would soon become obsolete. As an example, the
resource and memory management logic has been completely overhauled. Further-
more, YARN reached a certain stability as it is already in large-scale production use at
companies such as Yahoo!35. For Stratosphere, we used the version 0.2-ozone36 which
is currently under development. There is no support for previously published versions
and some features, such as iterations, are only available in 0.2-ozone. Hadoop and
Stratosphere were both executed on Java version 1.7.0 40 from Oracle. The slaves
run Linux Ubuntu Server 12.04.1 and the master Ubuntu Server 10.04.4.

Configuration and Tuning. Both systems have a large number of configuration
options which we do not show in detail for clarity. We generally configured the systems
to use all available resources, especially memory and disk37. We found, however, that
the optimal settings highly vary for each experiment and therefore most experiments
were executed with individual settings.

35http://developer.yahoo.com/blogs/ydn/hadoop-yahoo-more-ever-54421.html, accessed Sept,
24th, 2013

36We built Stratosphere from the source code available at https://github.com/dimalabs/ozone.
37both systems allow specifying multiple directories on different disks for temporary data to spread

disk I/O

43

http://developer.yahoo.com/blogs/ydn/hadoop-yahoo-more-ever-54421.html
https://github.com/dimalabs/ozone

4.2 Datasets

Records # Features File size # Non-zero values
RCV1-v2 23,149 and 781,265 47,236 43 MB and 1.34 GB 59,157,312 for test (av-

erage 76 per record)
Webspam 350,000 16,609,143 23.3 GB 1,304,697,446 (average

3728 per record)

Table 1: Dataset properties. If two values are given they refer to the training and test part.
We calculated the number of non-zero values using Hadoop counters.

We used two high dimensional real-world datasets for our evaluation. Both datasets
are available in a preprocessed numerical form at the dataset library of the libsvm
tool38. A dataset in the libsvm format is a simple text file with the label and a sparse
representation of the vector xi in each line. We now describe both datasets shortly.

Reuters RCV1-v2. This dataset consists of all 804,414 news articles in English
that were published by Reuters between August 20, 1996 and August 19, 1997 [28].
All articles were manually categorized using a hierarchy of topic codes, where multi-
ple topics can be selected at the same time. On the highest level there are four topic
codes: CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Government/So-
cial), and MCAT (Markets). To translate this into a binary classification problem,
we train a one-versus-all classifier that looks only at the presence or absence of a
single topic code. If nothing else is stated we used the ECAT category, similar to
Singh et al. Each of the 47,236 features describes the occurrence of a word according
to the bags of word model. Additionally, high frequency words (stop words) like
“the” were removed, all words where reduced to their stem (stemming) and tf-idf
(term-frequency inverse document-frequency) encoding was applied to measure the
importance of the occurrence. These are common methods from the fields of infor-
mation retrieval and text mining. The dataset is split into a training dataset with
23,149 and a test dataset with 781,265 records and the uncompressed filesize is 43
MB and 1.34 GB. In most cases we are only interested in the runtime and therefore
use the test file also in the training phase.

Webspam. This dataset consists of 350,000 websites that were categorized into
spam websites, such as link farms and regular websites [43]. Each website is described
in terms of 16,609,143 features, where each feature describes the occurrence of a tri-
gram. Each continuous three bytes are treated as a tri-gram, so that the word “yes”
would form a feature. The uncompressed filesize is 23.3 GB. We manually split the
dataset in two equally sized files to obtain a training and test set.

Both datasets are not in the terabyte range, and thereby do not exploit the systems
full potential. Nevertheless we think they are a good choice for multiple reasons.

38http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/, accessed Sept. 24th, 2013

44

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

First, as discussed in Chapter 2.1, we think that the speedup for real world and
normal-sized datasets is equally important as the scalability to very large datasets.
Second, both datasets are large in terms of dimensions, which is a challenge on its
own for the systems because they have to shuffle and group the data into millions
of groups and efficiently handle millions of UDF calls. To still be able to examine
the systems scaleout behaviour we used a scaled version of the RCV1-v2 where we
appended the whole test file multiple times to a larger single file.

4.3 Experiments

Let us start with a few words on the test methodology. Whenever the size of the
dataset allowed it, we executed ten trials for every experiment to guarantee statistical
significance. We discarded an additional first run after starting the system to consider
only a “hot” state of the system.. The runtime was measured using wall-clock-time,
i.e. total elapsed time for the job. The time for the system startup was not considered.
Equally we ignored the time to load the dataset since it is equivalent for both systems.
In most cases the plots should speak for themselves and only in a few cases we found
it supportive to add some values as text.

Speedup for RCV1-v2 In our first experiment we used the RCV1-v2 dataset as a
fixed size input and varied the number of nodes. The task was to run a single SFS
iteration to compute a ranking of all features. Figure 15 shows the absolute runtime
and the speedup, where the runtime for a single node serves as the reference value for
the speedup. First we observe that Stratosphere has almost linear speedup until dop
10 whereas Hadoop drops of after dop 2 and has almost constant runtime above dop
5. A first reason is that Hadoop has to start up two jobs where Stratosphere uses a
single. During our experiments we found that this can add several tens of seconds.
Furthermore, the number of Map tasks is determined solely by the number of input
splits and does not change with the number of nodes. Since there were only 44 map
tasks for our input, the map phase did not become faster for bigger clusters and
became a limiting factor. Consequently, changing the block size to 64 MB yielded
even worse results for Hadoop since there was even less parallelism during the Map
phase. This contrasts to Stratosphere where we did not see a big impact by the block
size since the number of Cross instances is solely determined by the specified degree
of parallelism.

We can further observe that due to the relatively small file size, the overhead for
adding more nodes clearly becomes a dominating factor for both systems. Strato-
sphere keeps the job startup costs relatively low since all tasks for one node are exe-
cuted as multiple threads in a single long-running Java Virtual Machine (JVM) that
is started with the system startup on each node. Hadoop Yarn, which is designed for
large clusters with multiple jobs running in parallel, isolates the long running services

45

●

●

●

●

●

●

● ● ●

5 10 15 20 25

0

50

100

150

200

250

300

Number of nodes

R
un

tim
e

(s
ec

on
ds

)

●

●

●

●

●

●

●

●
●

1 3 5 10 15 20 25

1
2
3
4
5

10

15

20

25

Number of nodes
S

pe
ed

up

● Stratosphere
Hadoop

Figure 15: Absolute runtime and speedup for a single SFS iteration using the RCV1-v2
dataset for training and evaluation (two times 1.34 GB) and an empty base model. The
blue dashed line denotes ideal speedup behaviour. Every point stands for the mean runtime
of 10 repetitions and the error bars denote 95% confidence intervals. Both systems use intra-
node dop 8, for Hadoop we set HDFS block size to 32 MB, for Stratosphere to 64 MB.

from the application specific tasks and creates a separate JVM, so called containers,
for each task. In contrast to Hadoop v1.0 these containers cannot be reused for dif-
ferent tasks in Yarn. We visualized the different memory layouts in Figure 16 and
explain them briefly in the caption of the Figure.

Let us shortly discuss some observations in favour of Hadoop. First we see that the
runtime for dop 2 is almost similar for both systems, which can be explained by the
smaller startup overhead which is no longer a dominating factor for Hadoop. Addi-
tionally we have to notice that Stratosphere has a relatively high reference runtime on
a single node, making its speedup curve generally look better. Furthermore, it took
some tuning and very specific settings to get the good results for Stratosphere. To
give an example, the runtime for dop 15 halved when we changed the TaskManager
memory manager size from 22GB to 21GB. To conclude this discussion we can say
that Stratosphere demonstrated an overall better speedup behaviour than Hadoop
for this smaller dataset, although being very sensitive to tuning, and we identified
the smaller overhead as a main reasons.

Speedup for Webspam. Our second speedup experiment is similar to the first
except we used the Webspam dataset. As we will see, the main new challenge is not

46

Network
Buffers

Memory
Manager

Java
Objects:
UDFs,

etc.

Operating System
+ Hadoop Datanode

+ Misc

Total system memory

Task Tracker JVM (Heap Space)

Free
Memory

Operating System
+ Hadoop Datanode

+ Misc

JVM 1
Yarn
Node

Manager

Total system memory

Memory Managed by Yarn

Free
Memory

Managed by
Yarn, not yet

allocated

JVM 2
Container 1
(e.g. Map

task)

JVM 3
Container 2
(e.g. Map

task)

S
tr

at
os

ph
e

re

M
em

or
y

La
yo

ut
H

ad
oo

p
M

em
or

y
L

ay
ou

t

Figure 16: Comparing Memory Layouts of Hadoop and Stratosphere slaves (proportions
are just an example). Stratosphere runs all tasks in a single JVM whereas Hadoop starts a
separate JVM for every task. The memory size for the memory manager and the number
and size of the network buffers are the main tuning options for Stratosphere. Our basic
configuration was as follows: 29GB heap size for the TaskTracker, 21 GB for the memory
manager, and 1GB for network buffers (32K buffers of 32KB size). Yarn was granted 29GB
in total and each container had a size from 1GB to 8GB.

the increased file size but the number of features, which highly increased to 16 million.
Initially we were not able to run the test for Stratosphere due to various errors where
the system was running out of memory. Most errors also occurred for small samples
of the dataset, indicating that the problem is the high number of features. Indeed,
Stratosphere emits about 16 million records in the Reducer for the training phase,
one for each trained coefficient. Additionally these records are merged to a single
record holding a dense mahout vector of 16 million double-precision floating-point
numbers, which should have a size of more than 127 MB (16,609,143 * 8 byte). Only
after longer tuning we found that it works if we set the intra-node dop to one39. This
partially explains the huge gap between Stratosphere and Hadoop because Hadoop
could be executed with intra-node dop 8, yielding higher parallelism and a better
resource utilization. But it is is probably not the only explanation since Stratosphere
is 14 times slower than Hadoop for 10 nodes (63 minutes versus 4,5 minutes). We
assume that another reason is that the large record with trained coefficients is crossed
with the test data and the system has to copy the record for every UDF call.

39Additionally we had to set the number and size of network buffers to 32,000 and 128 KB and
decrease the size for the memory manager to 15 GB.

47

●

●

●

●

●

●

5 10 15 20 25

0

50

100

150

Number of nodes

R
un

tim
e

(m
in

ut
es

)

63

42.9

32.8
27.5

4.5 3.2 3.2 2.9

● Stratosphere
Hadoop

● ●

●

●

●

●

1 3 5 10 15 20 25

1
2
3
4
5

10

15

20

25

Number of nodes
S

pe
ed

up

● Stratosphere
Hadoop

Figure 17: Absolute runtime and speedup for a single SFS iteration using a 50/50 train-
ing and test split of the Webspam dataset. For Hadoop we executed 10 repetitions, for
Stratosphere we could only run a single repetition starting at dop 4 due to the long runtime
(previous test runs yielded similar results). Therefore we had to plot a separate dashed line
for the ideal speedup for Stratosphere, considering dop 4 as the reference runtime. Strato-
sphere required specific network buffer (32K buffers of size 128KB) and memory settings
(15GB memory manager) and intra-node dop one, whereas Hadoop used intra-node dop 8.

Related to the Cross issue we have to mention that we introduced an optimization
in the Stratosphere job: Instead of deserializing the base model and the trained
coefficients for every UDF call we cached it to a local variable. This highly reduced
the runtime, e.g. from 64 minutes to 28 minutes for dop 25. Please consult Listing
2 in the appendix to get a better understanding of this optimization. The job we
used for the RCV1-v2 experiments only cached the base model, but we left these
results because we think that the burden should not be put on the developer to
remember this optimization40. We see that the different ways to implement closures
have a big impact on the runtime if the vectors for the trained coefficients or the base
model become very large. The Hadoop solution is not very elegant but performs very
efficient: It write the vectors to a file, broadcasts these and reads from file directly
into a vector, whereas Stratosphere transmits a single record for each number and
requires additional workaround UDFs yielding a higher overhead.

40To introduce caching was also a pitfall: When used with iterations, one has to know that the
same UDF instance is used in all iterations and to remember that the cache has to be repopulated
after each iteration.

48

If we look at the speedup behaviour we see that Hadoop has a great speedup behaviour
until dop 15 and the curve looks almost similar to the speedup curve of Stratosphere
for RCV1-v2. Stratosphere, considering the values we have, has an almost perfect
speedup behaviour. This makes sense because the overhead of adding a single node
with intra-node dop one is very low compared to the overall runtime. To conclude
this experiment, we see that both systems demonstrate a good speedup behaviour
on this larger dataset, however, Stratosphere is much slower because its approach to
closures does not scale to very high dimensional problems.

Scaleout Experiment. Since Stratosphere was too slow for the Webspam dataset
we fall back to use a scaled version of RCV1-v2 for our scaleout experiments. As
described in the background section, an ideal scaleout behaviour means that we can
proportionally increase the number of nodes and the problem size and still solve the
problem in the same time. It is not trivial to say what a scaled problem is in our
case. For this experiment we only considered the file size, however, as a future work
it would be beneficial to create a data generator that varies other equally important
influencing variables: The number of dimensions, the sparseness of the records and
the distribution of the number of records per feature.

●

●

●

●

●

2/
1

4/
2

8/
4

16
/8

24
/1

2

0

50

100

150

Number of nodes/Scale factor

R
un

tim
e

(s
ec

on
ds

)

● Stratosphere
Hadoop

●

●

●

●

●

2/
1

4/
2

8/
4

16
/8

24
/1

2

1.0

1.2

1.4

1.6

1.8

Number of nodes/Scale factor

In
ve

rt
ed

 S
ca

le
ou

t =
 R

el
at

iv
e

in
cr

ea
se

 o
f r

un
tim

e

● Stratosphere
Hadoop

Figure 18: Scaleout experiment using the scaled version of the RCV1-v2 test dataset for
training and evaluation. The number of nodes and the problem size are proportionally
increased. The left side shows the runtime, the right side shows the inverted scaleout which
is the runtime of the scaled problem divided by the runtime for two nodes. The runtime for
Stratosphere and two nodes is better than in Figure 15 because the job used for RCV1-v2
did not have the caching optimization for the trained coefficients.

49

Let us analyse the results shown in Figure 18. The ideal scaleout behaviour would
be a flat line in both diagrams, however this is impossible due to many factors such
as network overhead [17]. Comparing the runtime of the smallest and the biggest
problem, Stratosphere has a lower absolute increase in runtime (33 seconds versus 47
seconds) but a higher relative increase. More important to note is that the curves
behave linear, with steady but small growth, which suggests that we can scale to
very large problems while the runtime is increasing only slowly41. We can conclude
that both system demonstrate a good scaleout behaviour, in the meaning that it is
feasible to solve larger problems, in terms of file size, in almost the same amount of
time by adding more nodes. There is no well defined threshold for a “good” scaleout
behaviour, but the slope of our curves looks similar to an scaleout experiment for
SystemML [17].

Dataset File Size Non-zeros Features Nodes t Stratosphere t Hadoop
RCV1-v2 scale 12 32,38 GB 1,419,775,488 47,236 24 75 sec. 183 sec.
Webspam 23.3 GB 1,304,697,446 16,609,143 25 1,650 sec. 176 sec.

Table 2: Comparison of the runtime (denoted by t) for Webspam and the scaled RCV1-v2
problem.

We can also use our previous results for Webspam to analyse the scaleout behaviour
for higher dimensionality. As we see in Table 2, Webspam is comparable to the scaled
RCV1-v2 regarding the size and number of non-zero values but highly differs in the
number of features. If we compare the runtime for Stratosphere we see that it fails to
handle the high dimensionality, for reasons we already discussed, and we can conclude
that the good scaleout behaviour we identified before does no longer hold if we scale
the number of dimensions. In contrast to this, the results for Hadoop indicate that
the good scaleout behaviour also holds if we scale the number of dimensions.

Revisiting Amdahl and Gustafson. Let us shortly interpret the results from
our experiments in terms of Amdahl’s and Gustafson’s law. Gustafson refers to our
speedup experiments when he writes “One does not take a fixed-sized problem and
run it on various numbers of processors, except when doing academic research.” [18].
And he refers to our scaleout experiments when writing that “in practice, the problem
size scales with the number of processors” and “it may be most realistic to assume
run time, not problem size, is constant”. Although we do not share the position that
speedup scenarios are unrealistic42 we could observe the limits in such scenarios: For
example, the speedup curve for Stratosphere and RCV1-v2 reminds of the speedup

41 We did not test how many additional nodes we need to keep the runtime constant, but we
assume that the number is relatively small compared to the total number of nodes. Also we did not
test the scaleout for clusters with thousands of nodes and terabytes of data and there is probably a
limit.

42We already cited Yanpei Chen et al. [44] who showed the existence and relevancy of medium
and small jobs within big clusters, i.e. jobs that did not grow with cluster size.

50

curve according to Amdahl for a problem with serial fraction of about
1

15
that could

never experience a speedup greater than 15 because the serial fraction becomes the
dominating part. In our experiments, however, it was more the overhead than the
serial fraction that became the dominating factor. Since Amdahl and Gustafson both
ignore the overhead one should be slow to take Amdahl’s law as an excuse for a limited
speedup43. We could also observe that the scaleout behaviour of both systems is not
as limited as the speedup behaviour. This is in line with Gustafson who wrote that it
is “much easier to achieve efficient parallel performance than is implied by Amdahl’s
paradigm” if we scale out, i.e. we scale the problem and then speed it up.

Iterations for RCV1-v2. The last experiment aims to mimic a forward feature
selection use case with multiple iterations, where in each iteration one or more features
are being added. Thereby we evaluate the different approaches to iterations, namely
driver and native iterations, which are described in Chapter 3.2 and 3.3. It will be
particularly interesting to see how big the performance gain is when using the native
iterations feature of Stratosphere. We can expect two improvements from native
iterations: First, only a single job needs to be started and second, the system can
cache the training and test files in memory. We choose a setup of 15 nodes with
RCV1-v2 scale-factor 8 for training and evaluation, yielding an input size of 21.6 GB
in total and 1, 44 GB to cache for every node.

Let us first analyse the total runtime in Figure 19 for 10 iterations, adding one feature
per iteration. As expected, native iterations are fastest, followed by Stratosphere
driver iterations and Hadoop. The gain in performance for the native variant is
very small, which suggests that neither the disk/io nor the job startup times are
dominating factors of SFS. This seems natural since big parts of the job are not
affected by iterations, particularly the repartitioning of all data via Reduce.

Let us now look at the runtime when adding 10 features each iteration. The first
surprise is that this has a high impact on the runtime. The second surprise is that
Hadoop performs better in this situation and has a significantly smaller increase of
runtime. A first explanation for the increasing runtime is that the computations
we have to run on each non-zero value, almost 1 billion for scale-factor 8, become
more complex if the base model is no longer an empty vector. For this reason, the
experiment can be seen as a scaleout experiment where the size of the base model
is varied. As an explanation for the high increase of Stratosphere, the previously
discussed inefficiency of Cross becomes visible if the base model is no longer empty.

Let us look at the runtime for the individual iterations in Figure 20 to find out
more. We see that in most cases the runtime increases linearly with the size of the

43The good speedup for Stratosphere and RCV1-v2 showed that there is room for improvement.
Parallel databases are an example of what is possible: They are written from beginning on to
minimize the overhead and they almost approach linear speedup and scaleout [12].

51

1 10

0

10

20

30

40

50

Features added per iteration

R
un

tim
e

(m
in

ut
es

)

17.2
19

29.1

42.1
43.7

34.6

Stratosphere Native Iter.
Stratosphere Driver Iter.
Hadoop Driver Iter.

Figure 19: Absolute runtime for 10 iterations, using different approaches to iterations. We
varied the number of features added per iteration. The dataset RCV1-v2 with scale-factor 8
is used for training and evaluation. We show the mean and the 95% confidence intervals
(very small) of 3 executions.

base model, which is the only parameter changed. For Hadoop we can only see a
small increase of the runtime after we added many features, which suggests that the
increasing complexity of the computations, that holds for both systems, is just a
small factor. This leaves the inefficiency of Cross or any other detail we missed as an
explanation for the high increase of Stratosphere. We would like to further investigate
the reasons since we could not do this due to a lack of time and simple profiling tools
for Stratosphere. In the course of this we also like to analyse the irregularities in the
curves at dop 6 and 7. As a last observation we see that the curve for Stratosphere
driver iterations slightly decreases after adding a single feature, which can be seen as
the savings of having the input stored in-memory.

To summarize, we saw that native iterations bring only little performance improve-
ments for SFS. Additionally the runtime increases with the size of the base model,
slightly for Hadoop and significantly for Stratosphere. This is disappointing because
even with native iterations it would take long to build a complete model for high
dimensional and large scale data, since the number of relevant features can be large.
Singh et al. also did not include such a performance experiment in their paper, and
instead focused on the use case to evaluate, or rank, a set of new features in a single
iteration.

52

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●
●

●
● ● ● ●

●

●
●

●
●

2 4 6 8 10

0

100

200

300

Iteration

R
un

tim
e

(s
ec

on
ds

)

●

●

●

Stratosphere Native Add 1
Stratosphere Native Add 10
Stratosphere Driver Add 1
Stratosphere Driver Add 10
Hadoop Driver Add 1
Hadoop Driver Add 10

Figure 20: Runtime for the individual iterations using RCV1-v2 scale-factor 8 for training
and evaluation. We show the mean of three runs. The runtime for a driver iteration is
solely the time for the job, without the time of the driver to read the result, add the best
feature and call the job. The runtime for native iterations were extracted from logfiles.

As the last part of our experimental evaluation, we will have a closer look at the job
characteristics of SFS and the PACT Compiler, which both had an impact on all
previous experiments.

Limited Degree of Freedom. To recap, we saw that Stratosphere shows a bet-
ter runtime in all experiments, ignoring the high dimensional case, and we identified
the reduced overhead as one main factor. However, we could not observe that the
additional degrees of freedom and the ability of the PACT Compiler to choose from
multiple execution strategies made an overall positive contribution. A first explana-
tion for this is the characteristic of our algorithm. The main computational effort
for SFS is to process and repartition the test and training data by dimension, which
is done by Cross and Reduce. Stratosphere implements only a single strategy for
Reduce relying on hash partitioning and sorting, comparable to Hadoop44, so that it
has no degrees of freedom at this place. Furthermore, the large number of records

44The strategies for Reduce differ in detail so that Stratosphere sorts on the reducer side (Reduce)
whereas Hadoop sorts on the sender side (Map). The implementations also differ in the way they
use memory.

53

between Cross and Reduce cannot be pipelined as we saw during the analysis of our
scalable algorithm. This means that for big parts of the job there is limited space
to choose from different strategies or to apply other optimizations that distinguish
Stratosphere from Hadoop, such as pipelining parallelism or special join strategies.
This highlights that the efficient implementation of Cross (or Map) and Reduce is
crucial for SFS. The good speedup results indicate that the existing implementation
is already very efficient.

We also want to mention a situation where Stratosphere correctly used its degree
of freedom. Stratosphere avoids the repartitioning of the inputs to match the gains
and trained coefficients at the end of our plan since it recognizes that both outputs
are already partitioned by the same key, the dimension45. Although the data are
relatively small here, this optimization has the potential to improve the performance
significantly. The interested reader can also consult the whole execution plan in
Figure 23 that visualizes some of the issues discussed here. For clarity we decided
to put the execution plan in the appendix because it would require to explain too
many details. We will now discuss situations that are less specific to SFS, where
Stratosphere can choose from different strategies but makes an unfortunate decision.

PACT Compiler: Lost in Unknowns. A general problem we identified is that
the cost-based PACT Compiler is often unable to choose a good strategy because it
simply does not know all costs and has to apply a default strategy. To be more precise,
when talking about the compiler we mostly refer to the optimizer component of the
PACT Compiler. The compiler computes cost information for every node of the plan
based on information such as the number of records emitted (output cardinality) or
the size of the output in bytes. The only place where all these information are known
is a file input, but after the first UDF the system does not know anything about
the output since the user can emit any number of arbitrary records. The system
therefore relies on manual compiler hints, given by the developer in the code, or it
falls back to default estimations: Every UDF call is assumed to result in one output
record of unknown size. This often leads to situations where the compiler knows the
cardinality, but not the size.

Figure 21 shows such situation that we encountered twice in our plan, in the Cross
UDF for training and evaluation. In both cases a large file from HDFS is crossed
with a single record whose size in bytes is unknown at compile time46 and all we
could do is to give a hint that the cardinality is one. The compiler, however, applied

45This only works because we manually annotated both preceding Reduce UDFs with
@ConstantFields(0), stating that field 0 of any output record will be equal to field 0 of the input
records. This implies that the partitioning that was created for Reduce is preserved.

46Since the base model is a non-file input and can be the output of the previous iteration we do
not know its size in bytes at compile time. Similarly we do not know the size of record that contains
the base model and the trained coefficients which is the input of the evaluation Cross.

54

the strategy “unknown costs are always higher than known costs” and assumed that
the 24GB file is smaller and should be broadcasted to all nodes to realize the Cross.
For this reason, Stratosphere was significantly slower than Hadoop in all our first
experiments until we found the problem and hardcoded the strategy to be the other
way.

Size: Unknown
Cardinality: 1

Size: 24GB
Cardinality: 350000

Cross

Forward

Broadcast

Figure 21: Illustration of a PACT Compiler decision for Cross. The values are chosen
arbitrarily. The compiler follows a conservative strategy, avoids the risk that the first input
is larger in terms of size in bytes and broadcasts the second input to all nodes.

Unknown costs also prevent an optimization for Match, where Stratosphere tries to
broadcast one input if it is relatively small and thereby avoids the need to repartition
the other input. If the size of the small input is unknown, the system will fall back
to the conservative strategy to repartition both inputs, yielding a significant higher
runtime if the other input is large. To conclude, we think that the current cost based
compiler rules are too simple and do not reflect the reality where cost information
are often partially or completely unknown.

There are multiple approaches to address this. First the compiler rules for partially or
unknown costs could be revised, for example to handle the cases where only the cardi-
nality is known. Second, the system could try to collect more cost information, either
by offering more expressive and specialized contracts, such as a Map or Reduce where
only a single record can be emitted, or by offering a more unified and user friendly
compiler hint programming interface47. One could also apply static code analysis
to automatically infer cost information. The feasibility of this approach was shown
by Hueske et al. who created a prototype for Stratosphere [22] that is not yet part
of the system. A last approach is to use dynamic execution plans that are adapted
during execution based on collected statistics or new resource situations. Behm et al.
describe this approach for Hyracks and propose plans that depend on variables to be
bound later, i.e. at runtime [5]. SCOPE follows a similar approach, described in sec-
tion 7.2 of [46]. But inspiration can also be gained from traditional database systems
like Oracle48, who only recently introduced “adaptive query optimization” in their

47There are multiple places in the code to give these hints, making them harder to maintain and
understand.

48See Oracle Whitepaper “Optimizer with Oracle Database 12c” http://www.oracle.
com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf, ac-
cessed 2013, Oct. 21th

55

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf

optimizer. As long as non of these approaches is taken, it should be considered to del-
egate the decision to the user, e.g. by adding contracts like CrossBroadcastFirst or
MatchBroadcastFirst that dictate which of the inputs will be broadcasted49. This
reduces declarativity and degrees of freedom but also reduces the risk that the system
makes a decision that is either unfortunate or too conservative.

A full discussion of this issue is out of scope for this thesis. To conclude, we summarize
important aspects in Table 3: At compile time, the true output size and cardinality is
always unknown, and only in a few cases cardinality estimations are available, which
might be wrong. More cardinality information can be made available via specialized
contracts. What the table does not show is that all information can be derived at
runtime, which highlights that dynamic optimization is the most powerful approach.
The aforementioned work from other systems suggests that this is an active field of
research.

Operation Knowledge of output cardinality
and size at compile time

Estimation of output cardinality at
compile time

Map unknown N
Reduce unknown unknown
Cross unknown N1 ·N2

Match unknown unknown
CoGroup unknown unknown

Map one-to-one N (size unknown) N
Map filter ≤ N (size unknown) ≤ N

Table 3: Summary of the information about the output of an UDF that can be derived
from the input by the PACT Compiler. N is the number of records of the input, with an
index if there are multiple inputs. The bottom adds specialized versions of Map which are
currently not available but considered to be added.

4.4 Discussion of Scalable Feature Selection

The qualitative analysis of the SFS algorithm was not a part of this thesis and is
covered deeply by Singh et al. [38]. However, to evaluate the correctness of our
algorithm we compared our results to the results of Singh et al. and to the features
that are selected by a embedded feature selection method.

Comparison with Singh et al. Table 4 shows the first five SFS iterations adding
the best feature in each iteration. Similar to Singh et al. we used the training set
(RCV1-v2, ECAT) for training and testing. The results reported by Singh are not the
same but there are some similarities. First, the word-stems “shar” and “clos” were

49Meanwhile, this approach was realised for Cross by Stephan Ewen after discussing the short-
comings described here with him.

56

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Rank 1 compan 5578 market shar day lead 869
Rank 2 shar 5566 clos day lead group 830
Rank 3 million 5302 day year year year 779
Rank 4 year 5184 shar million peopl ton 705
Rank 5 market 5146 trad lead wednesday peopl 691

Table 4: Top five features for five SFS iterations using the RCV1-v2 training dataset for
test and training (ECAT), adding one feature each iteration. For iteration 1 and 5 we added
the approximated gain in log likelihood.

Iteration 1 Iteration 2
Rank 1 compan 5578 econom 1367
Rank 2 shar 5566 deficit 1083
Rank 3 million 5302 inflat 1001
Rank 4 year 5184 growth 934
Rank 5 market 5146 gdp 8837

Table 5: Top five features for two SFS iterations using the RCV1-v2 training dataset for
test and training (ECAT). Now we added the five best features after the first iteration.

commonly ranked high. Additionally the feature “econom”, which was ranked top 1
with a gain of 283.7 for Singh et al. has an almost equal gain of 281.87 in our results.
Furthermore, similar to Singh et al. the ranking changes after adding a feature, since
the gain in log likelihood reduces for correlated features. One partial explanation for
the difference is that we did not implement retraining and therefore the results after
the first iteration must be different. A second explanation is that Singh et al. neither
explain the actual implementation of their training and evaluation step, nor they
explain which constant intercept term they used, which both makes a difference in the
computed gain. To understand why the gains are higher in our results we analysed
the features “compan” and “econom”: “Compan” occurs in 6041 test records, of
which 476 are positive and 5565 are negative. This makes it a good distinguishing
feature and by adding it we can improve the log likelihood of most records by almost
one, which explains the high gain. The feature “econom”, however, occurs only 3149
times with 1331 positive and 1818 negative records, leading to an overall smaller gain
in likelihood. This analysis explains our results, although it leaves the question open
why features such as “compan” are ranked lower for Singh et al.

During our analysis we found that we receive almost identical results to Singh et
al. after we added the best 5 features. The top 5 features of the second iteration
in Table 5 are equal to the first ranking of Singh et al., except “growth” was added
before “gdp”. Due to a lack of time and information on the implementation of Singh
we could not further investigate the differences and instead continue with a second
approach to evaluate our results.

Comparison with Liblinear. As second evaluation we compare our ranking to

57

the results of an embedded feature selection method. We use the classification library
Liblinear [14] to train a sparse model using L1-regularized Logistic Regression for the
rcv1.binary dataset50. Liblinear selected 184 out of 47, 236 features for a regular-
ization parameter of 0.251. Despite the low number of features the accuracy for the
test dataset was still as good as 92.6, indicating that the few selected features are
highly relevant. We now sorted the resulting features by the absolute value of their
coefficient to obtain a ranking. In general such ranking can not be interpreted as a
ranking of importance, however, since all feature values are encoded in a range from
zero to one the ranking can be a good indicator for importance. We now applied
SFS to the same dataset, with three iterations, adding one feature at a time. The
results in Table 6 show that all features ranked top 10 from SFS were also selected
by Liblinear. Furthermore, highly ranked features are mostly in the upper quarter of
the Liblinear ranking.

To conclude, although we could not reproduce the exact results of Singh et al., our
experiments suggest that the ranking produced by our SFS implementation gives
valuable insights into the relevancy of individual features. As a future work we would
like to incorporate retraining after each iteration to evaluate the predictive accuracy
when training a complete model using SFS.

Iteration 1 Iteration 2 Iteration 3
Rank 1 trad 4 peopl 8 compan 2
Rank 2 day 7 kill 17 net 40
Rank 3 week 13 polit 51 day 7
Rank 4 clos 16 party 12 shar 10
Rank 5 market 18 day 7 play 11
Rank 6 point 5 lead 122 digest 1
Rank 7 peopl 8 elect 38 polit 51
Rank 8 lead 122 compan 2 party 12
Rank 9 high 163 milit 21 saturday 31
Rank 10 futur 39 peac 9 lead 122

Table 6: Top 10 features for the first five SFS iterations using the rcv1.binary training and
test dataset. The number denotes the ranking of the feature within the 184 features that
were selected from Liblinear when using L1-Regularization with a regularization parame-
ter 0.2. The dataset uses CCAT and ECAT as positive and GCAT and MCAT as negative
classes.

50The dataset is a binary variant of the predecessor of RCV1-v2 and can be downloaded under
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html#rcv1.binary

51For Liblinear, a low regularization value actually means high regularization and vice versa.

58

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary

5 Conclusion & Future Work

The goal of this thesis was to test the claim of Stratosphere that the improvements
over Hadoop and MapReduce such as the more expressive programming model sig-
nificantly ease the implementation of many complex data processing tasks and yield
a better performance. We reached this goal for one use case with three main contri-
butions.

First, we implemented SFS for Stratosphere using PACT, which can be seen as a
starting point for more algorithms from the area of predictive analytics. The source
code is available at https://github.com/andrehacker/logreg.

As a second contribution, we evaluated the programming models to test the first part
of the claim. We used the method to define SFS as an abstract scalable algorithm first,
to see how well it can be mapped to the programming models afterwards. This method
gave us a good understanding of an ideal programming model for SFS and revealed
a larger number of issues for both systems, the most important being summarized
in Table 7. While PACT improves the expressiveness significantly, it lacks a good
solution for closures, which turned out to be the first of two main weak spots we
identified.

As a third contribution we conducted a series of experiments to compare the per-
formance of both systems and to test the second part of the claim. The results
are summarized in Table 8. While Hadoop demonstrated a solid performance in all
experiments, Stratosphere showed impressive results in some experiments, but dis-
appointing results in others. We attribute this to the inefficiency of Cross and the
limitations of the PACT Compiler, which can be seen as a second main weak spot.

Expressiveness
& Declarativity

Degrees of
Freedom

Better User Exp.
More „Natural“ Fit

Better Performance

Readability

Verbosity

Unknown costs

Job characteristics

Optimizer

Figure 22: The implications of expressiveness and declarativity for Stratosphere and SFS.
The flash indicates where we encountered exceptions to the rule.

Our mixed results suggest that the claim of Stratosphere can only be partially con-
firmed for SFS. At the same time the results emphasize the potential of Stratosphere.
Figure 22 takes up our initial expectations from Figure 8 and adds where they could
be not fulfilled. This leads us to two conclusions, that can be derived from the upper
and lower part of Figure 22.

59

https://github.com/andrehacker/logreg

First, our experiences suggest that expressiveness highly correlates with the user expe-
rience: The benefits of well fitting constructs surpass the added complexity, whereas
a lack of expressiveness highly dampens the user experience. We also observed that
the readability suffers from verbosity since both implementations were far less concise
than our scalable algorithm. We conclude that Stratosphere is on the right path to
improve the overall user experience, assuming that good solutions are found for the
missing constructs and more concise programming interfaces become available.

Second, the experiments revealed that it is a long and stony path from expressiveness
to better performance: The algorithm may leave only few degrees of freedom or the
system may not be able to correctly use its freedom, which might even result in
worse performance. We observed instead that efficient implementations and reduced
overhead are equally important for better performance. This highlights the need for a
strategy to overcome the PACT Compiler limitations. It also highlights the potential
to further increase the efficiency.

As a last conclusion related to SFS, we saw that it is a good method to quickly rank
a large number of features, but our experiments raised doubts whether it is a well
suited method to build a complete model for high dimensional data.

Programming Model Evaluation

Hadoop Stratosphere

+ Map and Reduce fit well + Added expressiveness: Single job, iterations

− Limited expressiveness: Two jobs needed, no
iterations, distributed cache underspecified

− Limited expressiveness for closures required
workarounds

− Verbosity − Verbosity

− Immaturity (Bugs, Traps)

− No counters, few profiling tools

± Schemaless record model has pros and cons

Table 7: Summary of the most important findings of the programming model evaluation.

Experimental Evaluation

Hadoop Stratosphere

+ Good scaleout + Mostly good scaleout (*)

± Good speedup, but only for larger input + Mostly good speedup (*)

+ Scaled to high dim. and larger base models + Mostly faster (*), efficient, low overhead

− Mostly slower (*), high overhead − Problems for high dim. and larger base models

− Compiler problems, required hints

Table 8: Important results of the experimental evaluation. (*) denotes that this does hold
for the cases with high dimensionality and larger base models.

60

Future work. In the following we briefly discuss potential areas for future work.
We begin with work related to evaluation, continue with work related to the system
and end with the machine learning specific topics. This should be more understood
as a summary since most issues were already discussed.

As a first future work we propose to extend the evaluation to more systems and high
level languages. SFS could be implemented for example on Spark and in the Scala
interface of Stratosphere. A second area is to extend the evaluation to more algo-
rithms. An obvious example would be to implement an iterative training algorithm
in Stratosphere, which would be also required to extend SFS by retraining. For each
algorithm we propose to analyse several characteristics, in a way as done in this the-
sis: First, analyse which constructs are required and how well does the programming
model support them. Second, analyse which degrees of freedom are theoretically52

possible for the execution of the algorithm and how many does the system actually
have after the algorithm was implemented. Third, analyse which optimizations were
applied and how much do the additional degrees of freedom contribute to better
performance. Since the methodology was developed during this thesis and we had
limited time we could not analyse all mentioned aspects. This thesis is only a first
step in this direction. Particularly we did not analyse the large space of theoretical
degrees of freedom.

Our results show the importance of several issues for Stratosphere. The first is to
investigate into strategies to overcome the limitations of the optimizer. Our discussion
at the end of Chapter 4.3 suggest that the computation of costs in the presence of
custom UDFs as well as dynamic optimization are still active areas of research. To lay
the groundwork for the optimizer improvements, it might be benefitial to categorize
or even formalize53 all degrees of freedom as well as the information necessary to
make sound optimization decisions. A second main question is how to implement
support for closures. Our experiences suggest that it is best to look at this from the
perspective of a more concise high level language, where the notion of closures arises
more naturally, and to take into account a wider range of algorithms to gather the
requirements.

There is a wide area of potential research at the intersection of Parallel Data Process-
ing Systems and machine learning or predictive analytics. First, a parallel generator
for supervised learning experiments is required, as we discussed briefly in Chapter
4.354. A further question is how Stratosphere shall support machine learning tasks. In

52It is interesting to note that the efficiency of the system, such as sophisticated algorithms to
implement joins and exploitation of new hardware architectures, can be seen as theoretical degrees
of freedom and thus will be considered.

53Zhou et al. formalized the query optimizer of SCOPE in [46] which goes in a similar direction.
54 The Myriad toolkit developed at the TU Berlin might be adapted for this purpose. See https:

//github.com/TU-Berlin-DIMA/myriad-toolkit/wiki.

61

https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki
https://github.com/TU-Berlin-DIMA/myriad-toolkit/wiki

chapter Related Work we discussed approaches ranging from low level interfaces for
scalable matrix arithmetics to very high level frameworks such as MLBase. The com-
plexity and the wild variety of algorithms suggest that a cooperation with a machine
learning oriented research group should be intensified55.

55The Data Analytics Laboratory already has this target. See http://www.analytics.tu-berlin.de/

62

http://www.analytics.tu-berlin.de/

A Appendix

Constructor Parameter Description

String inputPathTrain Path of training input file (libsvm format), typically on hdfs.

String inputPathTest Path of evaluation input file (libsvm format).

boolean isMultilabelInput True, if the input files are multi-class files (i.e. each record may
have multiple labels), false otherwise.

int positiveClass Id of the class that will be used as positive class in a one-versus-all
classifier (only relevant for multi-class input).

String outputPath Output path of the whole job, typically hdfs.

int numFeatures Total number of features, or to be more concise, highest feature
id. Required to construct sparse vectors.

double newtonTolerance Tolerance for newton raphson convergence, e.g. 0.000001. If the
change in trained coefficient is smaller, convergence is assumed.

int newtonMaxIterations Maximum number of newton raphson iterations, e.g. 5.

double regularization L2-regularization penalty term. Set to 0 for no regularization
and increase for higher regularization. A high value keeps the
coefficient smaller.

boolean runLocal False, to execute the job regularily on a cluster. False, to execute
the job in local mode (via LocalExecutor).

String confPath Path to the config directory of Stratosphere. Required to start
the job.

String jarPath Local path of the jar file containing the job. Required to start the
job.

Table 9: Constructor arguments of the SFS driver class for Stratosphere. The arguments
for the PACT job are almost the same.

Listing 1: User defined function for Evaluation Map in MapReduce.

// The signature of the UDF defines the input and output schema

public class SFOEvalMapper extends Mapper<LongWritable, Text, IntWritable,

DoubleWritable> {

private static IntWritable outputKey = new IntWritable();

private static DoubleWritable outputValue = new DoubleWritable();

private boolean isMultilabelInput;

private int positiveClass;

private int numFeatures;

private String trainOutputPath;

private boolean collectDatasetStats;

private IncrementalModel baseModel;

List<Double> coefficients;

63

@Override

protected void setup(Context context) throws IOException, InterruptedException {

super.setup(context);

this.isMultilabelInput = Boolean.parseBoolean(

context.getConfiguration().get(SFOEvalJob.CONF_KEY_IS_MULTILABEL_INPUT));

this.positiveClass = Integer.parseInt(

context.getConfiguration().get(SFOEvalJob.CONF_KEY_POSITIVE_CLASS));

this.numFeatures = Integer.parseInt(

context.getConfiguration().get(SFOEvalJob.CONF_KEY_NUM_FEATURES));

this.trainOutputPath =

context.getConfiguration().get(SFOEvalJob.CONF_KEY_TRAIN_OUTPUT);

this.collectDatasetStats = Boolean.parseBoolean(

context.getConfiguration().get(SFOEvalJob.CONF_KEY_COLLECT_DATASET_STATS));

baseModel = SFOToolsHadoop.readBaseModel(context.getConfiguration());

coefficients =

SFOToolsHadoop.readTrainedCoefficients(context.getConfiguration(),

numFeatures, trainOutputPath);

}

@Override

public void map(LongWritable ignore, Text line, Context context) throws

IOException, InterruptedException {

Vector xi = new RandomAccessSparseVector(numFeatures);

int y;

if (isMultilabelInput) {

y = LibSvmVectorReader.readVectorMultiLabel(xi, line.toString(),

positiveClass);

} else {

y = LibSvmVectorReader.readVectorSingleLabel(xi, line.toString());

}

// Compute the log-likelihood for the current record using the base model

double piBase = LogRegMath.predict(xi, baseModel.getW(),

SFOGlobalSettings.INTERCEPT);

double llBase = LogRegMath.logLikelihood(y, piBase);

// Compute the gain in log-likelihood for all non-zeros in this record

for (Vector.Element feature : xi.nonZeroes()) {

int dim = feature.index();

if (! baseModel.isFeatureUsed(dim)) {

Double coefficient = coefficients.get(dim);

// Features we did not have in our training data won’t have a coefficient

if (coefficient != null) {

// Extend the base model by the current coefficient, revert afterwards

baseModel.getW().set(dim, coefficient);

64

double piNew = LogRegMath.logisticFunction(xi.dot(baseModel.getW()) +

SFOGlobalSettings.INTERCEPT);

baseModel.getW().set(dim, 0d);

double llNew = LogRegMath.logLikelihood(y, piNew);

outputKey.set(feature.index());

outputValue.set(llNew - llBase);

context.write(outputKey, outputValue);

}

}

if (collectDatasetStats) {

context.getCounter(SFOEvalJob.SFO_EVAL_COUNTER.NUM_NON_ZEROS).increment(1);

}

}

}

}

Listing 2: User defined function for Evaluation Map in PACT.

public class EvalComputeLikelihoods extends CrossStub {

public static final int IDX_INPUT1_INPUT_RECORD = 0;

public static final int IDX_INPUT1_LABEL = 1;

public static final int IDX_INPUT2_BASEMODEL = 0;

public static final int IDX_INPUT2_TRAINED_COEFFICIENTS = 1;

public static final int IDX_OUT_DIMENSION = EvalSumLikelihoods.IDX_DIMENSION;

public static final int IDX_OUT_LL_BASE = EvalSumLikelihoods.IDX_LL_BASE;

public static final int IDX_OUT_LL_NEW = EvalSumLikelihoods.IDX_LL_NEW;

private boolean baseModelAndCoefficientsCached = false;

private IncrementalModel baseModel = null;

Vector coefficients = null;

// It is a common optimization to reuse PactRecord objects instead of creating

them at the udf

// This is, however, not intuitive and adds verbosity

private final PactRecord recordOut = new PactRecord(3);

@Override

public void open(Configuration parameters) throws Exception {

// Dangerous: When using iterations, the udf instance will be reused

// and we have to make sure to deserialize again.

baseModelAndCoefficientsCached = false;

}

// The system has to create a new copy of baseModelAndCoefficients for every

call to guaranty that it is the same for every call

65

// If the system would pass a reference the udf could modify it

@Override

public void cross(PactRecord testRecord, PactRecord baseModelAndCoefficients,

Collector<PactRecord> out) throws Exception {

int y = testRecord.getField(IDX_INPUT1_INPUT_RECORD,

PactInteger.class).getValue();

Vector xi = testRecord.getField(IDX_INPUT1_LABEL,

PactVector.class).getValue();

// Manual optimization: Cache base model and trained coefficients

if (!baseModelAndCoefficientsCached) {

baseModel = baseModelAndCoefficients.getField(IDX_INPUT2_BASEMODEL,

PactIncrementalModel.class).getValue();

coefficients =

baseModelAndCoefficients.getField(IDX_INPUT2_TRAINED_COEFFICIENTS,

PactVector.class).getValue();

baseModelAndCoefficientsCached = true;

}

// Compute the log-likelihood for the current record using the base model

double piBase = LogRegMath.predict(xi, baseModel.getW(),

SFOGlobalSettings.INTERCEPT);

double llBase = LogRegMath.logLikelihood(y, piBase);

// Compute the gain in log-likelihood for all non-zeros in this record

for (Vector.Element feature : xi.nonZeroes()) {

int dim = feature.index();

if (! baseModel.isFeatureUsed(dim)) {

double coefficient = coefficients.get(dim);

// Features with coefficient 0 were either not in our training data

// or were considered to be not important. We don’t need to evaluate

these features

if (coefficient != 0) {

// Extend the base model by the current coefficient, revert afterwards

baseModel.getW().set(dim, coefficient);

double piNew = LogRegMath.logisticFunction(xi.dot(baseModel.getW()) +

SFOGlobalSettings.INTERCEPT);

baseModel.getW().set(dim, 0d);

double llNew = LogRegMath.logLikelihood(y, piNew);

recordOut.setField(IDX_OUT_DIMENSION, new PactInteger(dim));

recordOut.setField(IDX_OUT_LL_BASE, new PactDouble(llNew - llBase));

out.collect(recordOut);

}

}

}

}

}

66

Figure 23: Stratosphere execution plan for SFS, without iterations, splitted into two parts
to make it fit on the page.

67

References

[1] Apache Hadoop, http://hadoop.apache.org/, accessed 2013, Aug. 26.

[2] A. Alexandrov, S. Ewen, M. Heimel, F. Hueske, O. Kao, V. Markl, E. Nijkamp,
and D. Warneke. MapReduce and PACT - Comparing Data Parallel Program-
ming Models. Proceedings of Datenbanksysteme für Business, Technologie und
Web (BTW), pages 25–44, 2011.

[3] M. Anderson, D. Antenucci, and V. Bittorf. Brainwash: A Data System for
Feature Engineering. CIDR, 2013.

[4] D. Battré, S. Ewen, and F. Hueske. Nephele / PACTs : A Programming Model
and Execution Framework for Web-Scale Analytical Processing. Proceedings of
the 1st ACM symposium on Cloud computing, 3(1-2):119–130, 2010.

[5] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Vernica,
A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras. ASTERIX: towards a
scalable, semistructured data platform for evolving-world models. Distributed
and Parallel Databases, 29(3):185–216, Mar. 2011.

[6] M. Beyer and D. Laney. The Importance of �Big Data�: A Definition. Stamford,
CT: Gartner, 2012.

[7] C. M. Bishop. Pattern Recognition and Machine Learning, volume 4 of Infor-
mation science and statistics. Springer, 2006.

[8] V. Borkar, Y. Bu, and M. Carey. Declarative Systems for Large-Scale Machine
Learning. IEEE Data Eng. . . . , 2012.

[9] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation
of supervised learning in high dimensions. Proceedings of the 25th International
Conference on Machine Learning (2008), pages 96–103, 2008.

[10] J. Cohen, B. Dolan, and M. Dunlap. MAD skills: new analysis practices for big
data. Proceedings of the . . . , 2009.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. OSDI’04: Sixth Symposium on Operating System Design and Imple-
mentation, page 10, Dec. 2004.

[12] D. DeWitt and J. Gray. Parallel database systems: the future of high perfor-
mance database systems. Communications of the ACM, 35(6):1–26, 1992.

[13] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data
flows. Proceedings of the VLDB . . . , 2012.

68

[14] R. Fan, K. Chang, and C. Hsieh. LIBLINEAR: A library for large linear classi-
fication. The Journal of Machine . . . , 2008.

[15] A. Genkin, D. D. Lewis, and D. Madigan. Large-Scale Bayesian Logistic Regres-
sion for Text Categorization. Technometrics, 49(3):291–304, 2007.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. ACM
SIGOPS Operating Systems Review, 37(5):29, 2003.

[17] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine
learning on MapReduce, 2011.

[18] J. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 1988.

[19] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The
Journal of Machine Learning Research, 2003.

[20] A. Halevy, P. Norvig, and F. Pereira. The Unreasonable Effectiveness of Data,
2009.

[21] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, volume 27 of Springer Series in
Statistics. Springer, 2009.

[22] F. Hueske, M. Peters, A. Krettek, and M. Ringwald. Peeking into the Optimiza-
tion of Data Flow Programs with MapReduce-style UDFs. 2013.

[23] K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale l1-
regularized logistic regression. Journal of Machine Learning Research, 8(8):1519–
1555, 2007.

[24] P. Komarek and A. W. Moore. Making logistic regression a core data mining
tool with TR-IRLS, 2005.

[25] A. P. Konda. Feature Selection in Enterprise Analytics: A Demonstration using
an R-based Data Analytics System. Proceedings of the VLDB . . . , 2013.

[26] T. Kraska, A. Talwalkar, J. Duchi, and R. Griffith. MLbase: A Distributed
Machine-learning System. CIDR, 2013.

[27] S. S.-i. Lee, H. Lee, P. Abbeel, and A. Y. A. Ng. Efficient L 1 Regularized
Logistic Regression. Compute, 21(1):401, 2004.

[28] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Benchmark Collec-
tion for Text Categorization Research. Journal of Machine Learning Research,
5:361–397, 2004.

69

[29] J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Synthesis
Lectures on Human Language Technologies, 3(1):1–177, 2010.

[30] J. Lin and A. Kolcz. Large-scale machine learning at twitter. Proceedings of the
2012 international conference on Management of Data SIGMOD 12, page 793,
2012.

[31] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers. Big data : The next frontier for innovation , competition , and produc-
tivity. McKinsey Global Institute, 364(May):156, 2011.

[32] T. Minka. A comparison of numerical optimizers for logistic regression. Unpub-
lished draft, 2003.

[33] C. Olston, B. Reed, and U. Srivastava. Pig latin: a not-so-foreign language for
data processing. . . . on Management of data, 2008.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis. In
Proceedings of the 35th SIGMOD international conference on Management of
data, SIGMOD ’09, page 165, New York, New York, USA, 2009. ACM Press.

[35] R. R Development Core Team. R: A Language and Environment for Statistical
Computing, 2011.

[36] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas. Nobody
ever got fired for using Hadoop on a cluster. Proceedings of the 1st International
Workshop on Hot Topics in Cloud Data Processing HotCDP 12, pages 1–5, 2012.

[37] S. Sakr, A. Liu, and A. Fayoumi. The Family of MapReduce and Large Scale
Data Processing Systems. arXiv preprint arXiv:1302.2966, 2013.

[38] S. Singh, J. Kubica, S. Larsen, and D. Sorokina. Parallel Large Scale Feature Se-
lection for Logistic Regression. SIAM International Conference on Data Mining
(SDM), pages 1172–1183, 2009.

[39] M. Stonebraker. The Case for Shared Nothing. Database Engineering Bulletin,
9(1):4–9, 1986.

[40] G. Sussman and G. S. Jr. Scheme: A interpreter for extended lambda calculus.
Higher-Order and Symbolic Computation, 1998.

[41] J. S. Ward and A. Barker. Undefined By Data: A Survey of Big Data Definitions.
page 2, Sept. 2013.

[42] D. Warneke and O. Kao. Nephele: Efficient Parallel Data Processing in the
Cloud. In Proceedings of the 2nd Workshop on ManyTask Computing on Grids

70

and Supercomputers MTAGS 09 November 2009 Portland OR USA, MTAGS
’09, pages 1–10. ACM, 2009.

[43] S. Webb. Introducing the Webb spam corpus: Using email spam to identify Web
spam automatically.

[44] S. A. Yanpei Chen, R. H. Katz, Y. Chen, S. Alspaugh, and R. Katz. Interactive
Query Processing in Big Data Systems: A Cross Industry Study of MapReduce
Workloads. Proceedings of the VLDB Endowment, 5(12):1802–1813, 2012.

[45] M. Zaharia and M. Chowdhury. Spark: cluster computing with working sets.
Proceedings of the 2nd USENIX conference on Hot topics in cloud computing,
pages 10–10, 2010.

[46] J. Zhou, N. Bruno, M. Wu, and P. Larson. SCOPE: parallel databases meet
MapReduce. The VLDB Journal, 2012.

71

List of Abbreviations

DAG Direct acyclic graph

DOP Degree of parallelism

HDFS Hadoop Distributed File System

JVM Java Virtual Machine

PACT Parallelization Contract

SFS Scalable feature selection

UDF User defined function

72

List of Figures

1 Different types of parallelism . 8
2 Scaleout versus scaleup . 10
3 Visualization of different aspects of parallelism 11
4 Hadoop 1.0 versus Hadoop Yarn . 14
5 An example MapReduce job . 14
6 Semantics of the currently available PACTs 16
7 From PACT plan to execution . 17
8 Expected improvements from Stratosphere 18
9 Feature selection as a wrapper method 21
10 Visualization of linear regression and logistic regression 22
11 Strategy for the programming model evaluation for SFS 30
12 Job Graph for SFS using Hadoop MapReduce 35
13 SFS Job Graph for Stratosphere . 38
14 One approach for closure support . 40
15 Speedup experiment for the RCV1-v2 dataset 46
16 Comparing Memory Layouts of Hadoop and Stratosphere 47
17 Speedup experiment for the Webspam dataset 48
18 Scaleout experiment for the scaled RCV1-v2 dataset 49
19 Absolute runtime for iteration experiment, using RCV1-v2 scale-factor 8 52
20 Runtime for individual iterations using RCV1-v2 scale-factor 8 53
21 Illustration of PACT Compiler decision 55
22 The implications of expressiveness and declarativity 59
23 Stratosphere execution plan for SFS 67

73

List of Tables

1 Dataset properties . 44
2 Comparing Webspam and RCV1-v2 scaleout 50
3 Summary of cost information that can be derived by the PACT Compiler 56
4 Ranking results for five iterations adding 1 feature per iteration . . . 57
5 Ranking results for five iterations adding 5 feature per iteration . . . 57
6 Top 10 features for the first five iterations and ranking of Liblinear . 58
7 Summary of the programming model evaluation 60
8 Summary of the experimental evaluation 60
9 SFS Driver constructor arguments . 63

74

	Introduction and Motivation
	Background & Related Work
	Parallel Data Processing Systems
	Fundamental Concepts
	Hadoop & MapReduce
	Stratosphere & PACT

	Machine Learning and Feature Selection
	Machine Learning Basics
	Feature Selection
	Logistic Regression
	Scalable Feature Selection

	Related Work

	Comparing Parallel Programming Models
	Making Feature Selection Scalable
	Scalable Feature Selection on MapReduce
	Scalable Feature Selection on PACT

	Experimental Evaluation
	Experimental Setup
	Datasets
	Experiments
	Discussion of Scalable Feature Selection

	Conclusion & Future Work
	Appendix
	References
	List of Abbreviations
	List of Figures
	List of Tables

